let-A-0-dx-x-2-i-2-i-2-1-1-calculate-A-2-let-R-Re-A-and-I-Im-A-find-the-value-of-R-and-I- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62141 by maxmathsup by imad last updated on 15/Jun/19 letA=∫0+∞dx(x2−i)2(i2=−1)1)calculateA2)letR=Re(A)andI=Im(A)findthevalueofRandI. Commented by maxmathsup by imad last updated on 16/Jun/19 1)wehave2A=∫−∞+∞dx(x2−i)2letw(z)=1(z2−i)2⇒w(z)=1(z−i)2(z+i)2=1(z−eiπ4)2(z+eiπ4)2sothepolesofware+−eiπ4(doubles)residustheoremgive∫−∞+∞w(z)dz=2iπRes(w,eiπ4)Res(w,eiπ4)=limz→eiπ41(2−1)!{(z−eiπ4)2w(z)}(1)=limz→eiπ4{(z+eiπ4)−2}(1)=limz→eiπ4−2(z+eiπ4)−3=−2(2eiπ4)−3=−2.2−3.e−3iπ4=−14{cos(3π4)−isin(3π4)}=−14{−cos(π4)−isin(π4)}=1422+i1422=28+i28⇒∫−∞+∞w(z)dz=2iπ{28+i28}=iπ24−π24=2A⇒A=−π28+iπ282)wehaveA=∫0∞dx(x2−i)2=∫0∞(x2+i)2(x2−i)2(x2+i)2dx=∫0∞x4+2ix2−1(x4+1)2dx=∫0∞x4−1+2ix2x8+2x4+1dx=∫0∞x4−1x8+2x4+1dx+i∫0∞2x2x8+2x4+1dx⇒R=∫0∞x4−1x8+2x4+1andI=∫0∞2x2x8+2x4+1dx⇒R=−π28andI=π28. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-1-3-Next Next post: its-9-30pm-in-Cameroon- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.