Menu Close

let-A-0-dx-x-2-i-2-i-2-1-1-calculate-A-2-let-R-Re-A-and-I-Im-A-find-the-value-of-R-and-I-




Question Number 62141 by maxmathsup by imad last updated on 15/Jun/19
let A =∫_0 ^(+∞)   (dx/((x^2  −i)^2 ))     ( i^2 =−1)  1) calculate A  2) let R =Re(A) and I =Im(A)  find  the value of R and I .
letA=0+dx(x2i)2(i2=1)1)calculateA2)letR=Re(A)andI=Im(A)findthevalueofRandI.
Commented by maxmathsup by imad last updated on 16/Jun/19
1) we have 2A =∫_(−∞) ^(+∞)   (dx/((x^2 −i)^2 ))  let w(z) =(1/((z^2 −i)^2 )) ⇒  w(z) =(1/((z−(√i))^2 (z+(√i))^2 )) =(1/((z−e^((iπ)/4) )^2 (z +e^((iπ)/4) )^2 ))  so the poles of w are +^− e^((iπ)/4) (doubles)  residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπ Res(w,e^((iπ)/4) )  Res(w,e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )     (1/((2−1)!)){(z−e^((iπ)/4) )^2 w(z)}^((1))   =lim_(z→e^((iπ)/4) )      {   (z+e^((iπ)/4) )^(−2) }^((1))  =lim_(z→e^((iπ)/4) )      −2(z+e^((iπ)/4) )^(−3)   =−2 (2 e^((iπ)/4) )^(−3)  =−2.2^(−3)  .e^((−3iπ)/4)  =−(1/4){ cos(((3π)/4))−isin(((3π)/4))}  =−(1/4){−cos((π/4))−isin((π/4))} =(1/4)((√2)/2) +i(1/4)((√2)/2) =((√2)/8) +i((√2)/8)  ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ {((√2)/8) +i((√2)/8)} =((iπ(√2))/4) −((π(√2))/4) =2A ⇒  A =−((π(√2))/8) +((iπ(√2))/8)  2) we have A = ∫_0 ^∞   (dx/((x^2 −i)^2 )) =∫_0 ^∞    (((x^2 +i)^2 )/((x^2 −i)^2 (x^2 +i)^2 )) dx  =∫_0 ^∞   ((x^4  +2ix^2  −1)/((x^4  +1)^2 )) dx =∫_0 ^∞     ((x^4 −1 +2ix^2 )/(x^8  +2x^4  +1))dx  = ∫_0 ^∞  ((x^4 −1)/(x^8  +2x^4  +1)) dx +i ∫_0 ^∞    ((2x^2 )/(x^8  +2x^4  +1)) dx ⇒  R =∫_0 ^∞   ((x^4 −1)/(x^8  +2x^4  +1))  and  I = ∫_0 ^∞   ((2x^2 )/(x^8  +2x^4  +1)) dx ⇒  R =−((π(√2))/8)  and  I =((π(√2))/8) .
1)wehave2A=+dx(x2i)2letw(z)=1(z2i)2w(z)=1(zi)2(z+i)2=1(zeiπ4)2(z+eiπ4)2sothepolesofware+eiπ4(doubles)residustheoremgive+w(z)dz=2iπRes(w,eiπ4)Res(w,eiπ4)=limzeiπ41(21)!{(zeiπ4)2w(z)}(1)=limzeiπ4{(z+eiπ4)2}(1)=limzeiπ42(z+eiπ4)3=2(2eiπ4)3=2.23.e3iπ4=14{cos(3π4)isin(3π4)}=14{cos(π4)isin(π4)}=1422+i1422=28+i28+w(z)dz=2iπ{28+i28}=iπ24π24=2AA=π28+iπ282)wehaveA=0dx(x2i)2=0(x2+i)2(x2i)2(x2+i)2dx=0x4+2ix21(x4+1)2dx=0x41+2ix2x8+2x4+1dx=0x41x8+2x4+1dx+i02x2x8+2x4+1dxR=0x41x8+2x4+1andI=02x2x8+2x4+1dxR=π28andI=π28.

Leave a Reply

Your email address will not be published. Required fields are marked *