Menu Close

let-a-0-pi-and-A-x-x-2n-2cos-na-x-n-1-1-factorize-inside-C-x-A-x-2-factorize-inside-R-x-A-x-




Question Number 31496 by abdo imad last updated on 09/Mar/18
let a∈]0,π[   and A(x)= x^(2n)  −2cos(na)x^n  +1  1)factorize inside C[x] A(x)  2) factorize inside R[x] A(x).
leta]0,π[andA(x)=x2n2cos(na)xn+11)factorizeinsideC[x]A(x)2)factorizeinsideR[x]A(x).
Commented by abdo imad last updated on 14/Mar/18
first let put x^n  =z  ⇔ x=^n (√z) ⇒ A(x)=z^2  −2cos(na)z +1  Δ^′  =cos^2 (na)−1=−sin^2 (na)=(isin(na))^2   z_1 = cos(na) +isin(na)=e^(ina)   and z_2 =e^(−ina)  ⇒  x=z^(1/n)  ⇒ x=e^(ia)  or  x=e^(−a)  ⇒  A(x)=(z−e^(ina) )(z−e^(−ina) )=(x^n  −e^(ina) )(x^n  −e^(−ina) )  A(x)=0  ⇔ x^n  = e^(ina)  or x^n =e^(−ina)  ⇔ (x e^(−ia) )^n =1x  or (x e^(ia) )^n =1 ⇔ x e^(−ia) =e^(i((2kπ)/n))   or   x e^(ia)  =e^(i((2kπ)/n))  ⇒  x=e^(i(((2kπ)/n)+a))  or x= e^(i(((2kπ)/n)−a))  so the roots of A(x) are  x_k =e^(i(((2kπ)/n)+a))   and t_k = e^(i(((2kπ)/n) −a))  and k∈[[0,n−1]].and  A(x)= Π_(k=0) ^(n−1)  (x −x_k )(x−t_k )  A(x)= Π_(k=0) ^(n−1) (x−e^(i(((2kπ)/n)+a)) ) Π_(k=0) ^(n−1)  (x −e^(i(((2kπ)/(n ))−a)) )  be continued...
firstletputxn=zx=nzA(x)=z22cos(na)z+1Δ=cos2(na)1=sin2(na)=(isin(na))2z1=cos(na)+isin(na)=einaandz2=einax=z1nx=eiaorx=eaA(x)=(zeina)(zeina)=(xneina)(xneina)A(x)=0xn=einaorxn=eina(xeia)n=1xor(xeia)n=1xeia=ei2kπnorxeia=ei2kπnx=ei(2kπn+a)orx=ei(2kπna)sotherootsofA(x)arexk=ei(2kπn+a)andtk=ei(2kπna)andk[[0,n1]].andA(x)=k=0n1(xxk)(xtk)A(x)=k=0n1(xei(2kπn+a))k=0n1(xei(2kπna))becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *