Menu Close

let-A-0-pi-dx-cosx-sinx-R-1-find-a-explicit-form-of-A-2-find-also-B-0-pi-dx-cosx-sinx-2-3-calculate-0-pi-dx-2-cosx-sinx-and-0-pi-dx




Question Number 64850 by mathmax by abdo last updated on 22/Jul/19
let A_λ  =∫_0 ^π    (dx/(λ  +cosx +sinx))    (λ ∈ R)  1) find a explicit form of A_λ   2)  find also B_λ  =∫_0 ^π   (dx/((λ +cosx +sinx)^2 ))  3) calculate ∫_0 ^π    (dx/(2+cosx +sinx))  and ∫_0 ^π   (dx/((3+cosx +sinx)^2 ))
letAλ=0πdxλ+cosx+sinx(λR)1)findaexplicitformofAλ2)findalsoBλ=0πdx(λ+cosx+sinx)23)calculate0πdx2+cosx+sinxand0πdx(3+cosx+sinx)2
Commented by mathmax by abdo last updated on 23/Jul/19
1) A_λ =∫_0 ^π   (dx/(λ +cosx +sinx))  changement tan((x/2))=t give  A_λ =∫_0 ^∞        (1/(λ +((1−t^2 )/(1+t^2 )) +((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^∞     ((2dt)/(λ+λt^2  +1−t^2  +2t))  =2∫_0 ^∞    (dt/((λ−1)t^2  +2t +1+λ))  let decompose F(t)=(1/((λ−1)t^2  +2t+1+λ))  Δ^′  =1−(λ−1)(λ+1) =1−(λ^2 −1) =2−λ^2   case 1  2−λ^2 >0 ⇒∣λ∣<(√2) ⇒t_1 =((−1+(√(2−λ^2 )))/(λ−1))     (λ≠1)  t_2 =((−1−(√(2−λ^2 )))/(λ−1)) ⇒F(t) =(1/((λ−1)(t−t_1 )(t−t_2 ))) ⇒  A_λ =(2/(λ−1))∫_0 ^∞    (1/((2(√(2−λ^2 )))/(λ−1))) ((1/(t−t_1 )) −(1/(t−t_2 )))dt =(1/( (√(2−λ^2 ))))∫_0 ^∞    ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/(2(√(2−λ^2 ))))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞)  =(1/(2(√(2−λ^2 ))))ln∣(t_2 /t_1 )∣  A_λ =(1/(2(√(2−λ^2 ))))ln∣((1+(√(2−λ^2 )))/(1−(√(2−λ^2 ))))∣
1)Aλ=0πdxλ+cosx+sinxchangementtan(x2)=tgiveAλ=01λ+1t21+t2+2t1+t22dt1+t2=02dtλ+λt2+1t2+2t=20dt(λ1)t2+2t+1+λletdecomposeF(t)=1(λ1)t2+2t+1+λΔ=1(λ1)(λ+1)=1(λ21)=2λ2case12λ2>0⇒∣λ∣<2t1=1+2λ2λ1(λ1)t2=12λ2λ1F(t)=1(λ1)(tt1)(tt2)Aλ=2λ10122λ2λ1(1tt11tt2)dt=12λ20(1tt11tt2)dt=122λ2[lntt1tt2]0+=122λ2lnt2t1Aλ=122λ2ln1+2λ212λ2
Commented by mathmax by abdo last updated on 23/Jul/19
case 2  2−λ^2 <0 ⇒∣λ∣>(√2) ⇒Δ^′ <0 and  (λ−1)t^2  +2t +1+λ =(λ−1){t^2  +(2/(λ−1))t  +((1+λ)/(λ−1))}  =(λ−1){ t^2  +((2t)/(λ−1)) +(1/((λ−1)^2 )) +((1+λ)/(λ−1)) −(1/((λ−1)^2 ))}  =(λ−1){ (t +(1/(λ−1)))^2  +((λ^2 −2)/((λ−1)^2 ))} we use the changement   t+(1/(λ−1)) =((√(λ^2 −2))/(∣λ−1∣)) u ⇒A_λ =(2/(λ−1))∫_0 ^∞   (dt/((t+(1/(λ−1)))^2  +((λ^2 −2)/((λ−1)^2 ))))  =(2/(λ−1))∫_((s(λ))/( (√(λ^2 −2)))) ^(+∞)        (1/(((λ^2 −2)/((λ−1)^2 ))(1+u^2 )))((√(λ^2 −2))/(∣λ−1∣)) du  =((2(λ−1)^2 )/((λ−1)∣λ−1∣)) (√(λ^2 −2))  [arctanu]_((s(λ))/( (√(λ^2 −2)))) ^(+∞)   A_λ =2s(λ−1)(√(λ^2 −2))  ((π/2) −arctan(((s(λ))/( (√(λ^2 −2))))))  with s(x) =1 if x>0 and s(x)=−1 if x<0
case22λ2<0⇒∣λ∣>2Δ<0and(λ1)t2+2t+1+λ=(λ1){t2+2λ1t+1+λλ1}=(λ1){t2+2tλ1+1(λ1)2+1+λλ11(λ1)2}=(λ1){(t+1λ1)2+λ22(λ1)2}weusethechangementt+1λ1=λ22λ1uAλ=2λ10dt(t+1λ1)2+λ22(λ1)2=2λ1s(λ)λ22+1λ22(λ1)2(1+u2)λ22λ1du=2(λ1)2(λ1)λ1λ22[arctanu]s(λ)λ22+Aλ=2s(λ1)λ22(π2arctan(s(λ)λ22))withs(x)=1ifx>0ands(x)=1ifx<0
Commented by mathmax by abdo last updated on 23/Jul/19
2) we have (dA_λ /dλ) =−∫_0 ^π    (dx/((λ +cosx +sinx)^2 )) =−B_λ  ⇒  B_λ  =−A_λ ^′       rest to calculate A_λ ^′ ....
2)wehavedAλdλ=0πdx(λ+cosx+sinx)2=BλBλ=AλresttocalculateAλ.
Commented by mathmax by abdo last updated on 23/Jul/19
3) let calculate ∫_0 ^π    (dx/(2+cosx +sinx))   here λ =2  and  2−λ^2 =−2<0  ⇒∫_0 ^π   (dx/(2+cosx +sinx)) =A_2   =2s(1)(√(2^2 −2)){ (π/2) −arctan(((s(2))/( (√(2^2 −2)))))}  =2(√2){(π/2) −arctan((1/( (√2))))} =π(√2) −2(√2)((π/2) −arctan((√2)))  =π(√2)−π(√2) +2(√2)arctan((√2)) ⇒  ∫_0 ^π   (dx/(2+cosx +sinx)) =2(√2)arctan((√2)) .
3)letcalculate0πdx2+cosx+sinxhereλ=2and2λ2=2<00πdx2+cosx+sinx=A2=2s(1)222{π2arctan(s(2)222)}=22{π2arctan(12)}=π222(π2arctan(2))=π2π2+22arctan(2)0πdx2+cosx+sinx=22arctan(2).

Leave a Reply

Your email address will not be published. Required fields are marked *