Question Number 64850 by mathmax by abdo last updated on 22/Jul/19
$${let}\:{A}_{\lambda} \:=\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\lambda\:\:+{cosx}\:+{sinx}}\:\:\:\:\left(\lambda\:\in\:{R}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{A}_{\lambda} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:{also}\:{B}_{\lambda} \:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left(\lambda\:+{cosx}\:+{sinx}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{2}+{cosx}\:+{sinx}}\:\:{and}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\left(\mathrm{3}+{cosx}\:+{sinx}\right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 23/Jul/19
$$\left.\mathrm{1}\right)\:{A}_{\lambda} =\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\lambda\:+{cosx}\:+{sinx}}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{\mathrm{1}}{\lambda\:+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{2}{dt}}{\lambda+\lambda{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} \:+\mathrm{2}{t}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\lambda−\mathrm{1}\right){t}^{\mathrm{2}} \:+\mathrm{2}{t}\:+\mathrm{1}+\lambda}\:\:{let}\:{decompose}\:{F}\left({t}\right)=\frac{\mathrm{1}}{\left(\lambda−\mathrm{1}\right){t}^{\mathrm{2}} \:+\mathrm{2}{t}+\mathrm{1}+\lambda} \\ $$$$\Delta^{'} \:=\mathrm{1}−\left(\lambda−\mathrm{1}\right)\left(\lambda+\mathrm{1}\right)\:=\mathrm{1}−\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\:=\mathrm{2}−\lambda^{\mathrm{2}} \\ $$$${case}\:\mathrm{1}\:\:\mathrm{2}−\lambda^{\mathrm{2}} >\mathrm{0}\:\Rightarrow\mid\lambda\mid<\sqrt{\mathrm{2}}\:\Rightarrow{t}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{\lambda−\mathrm{1}}\:\:\:\:\:\left(\lambda\neq\mathrm{1}\right) \\ $$$${t}_{\mathrm{2}} =\frac{−\mathrm{1}−\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{\lambda−\mathrm{1}}\:\Rightarrow{F}\left({t}\right)\:=\frac{\mathrm{1}}{\left(\lambda−\mathrm{1}\right)\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${A}_{\lambda} =\frac{\mathrm{2}}{\lambda−\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\frac{\mathrm{2}\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{\lambda−\mathrm{1}}}\:\left(\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right){dt}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}\int_{\mathrm{0}} ^{\infty} \:\:\:\left(\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}\left[{ln}\mid\frac{{t}−{t}_{\mathrm{1}} }{{t}−{t}_{\mathrm{2}} }\mid\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{ln}\mid\frac{{t}_{\mathrm{2}} }{{t}_{\mathrm{1}} }\mid \\ $$$${A}_{\lambda} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{ln}\mid\frac{\mathrm{1}+\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}{\mathrm{1}−\sqrt{\mathrm{2}−\lambda^{\mathrm{2}} }}\mid \\ $$
Commented by mathmax by abdo last updated on 23/Jul/19
$${case}\:\mathrm{2}\:\:\mathrm{2}−\lambda^{\mathrm{2}} <\mathrm{0}\:\Rightarrow\mid\lambda\mid>\sqrt{\mathrm{2}}\:\Rightarrow\Delta^{'} <\mathrm{0}\:{and} \\ $$$$\left(\lambda−\mathrm{1}\right){t}^{\mathrm{2}} \:+\mathrm{2}{t}\:+\mathrm{1}+\lambda\:=\left(\lambda−\mathrm{1}\right)\left\{{t}^{\mathrm{2}} \:+\frac{\mathrm{2}}{\lambda−\mathrm{1}}{t}\:\:+\frac{\mathrm{1}+\lambda}{\lambda−\mathrm{1}}\right\} \\ $$$$=\left(\lambda−\mathrm{1}\right)\left\{\:{t}^{\mathrm{2}} \:+\frac{\mathrm{2}{t}}{\lambda−\mathrm{1}}\:+\frac{\mathrm{1}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}+\lambda}{\lambda−\mathrm{1}}\:−\frac{\mathrm{1}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }\right\} \\ $$$$=\left(\lambda−\mathrm{1}\right)\left\{\:\left({t}\:+\frac{\mathrm{1}}{\lambda−\mathrm{1}}\right)^{\mathrm{2}} \:+\frac{\lambda^{\mathrm{2}} −\mathrm{2}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }\right\}\:{we}\:{use}\:{the}\:{changement}\: \\ $$$${t}+\frac{\mathrm{1}}{\lambda−\mathrm{1}}\:=\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\mid\lambda−\mathrm{1}\mid}\:{u}\:\Rightarrow{A}_{\lambda} =\frac{\mathrm{2}}{\lambda−\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\lambda−\mathrm{1}}\right)^{\mathrm{2}} \:+\frac{\lambda^{\mathrm{2}} −\mathrm{2}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{2}}{\lambda−\mathrm{1}}\int_{\frac{{s}\left(\lambda\right)}{\:\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}} ^{+\infty} \:\:\:\:\:\:\:\frac{\mathrm{1}}{\frac{\lambda^{\mathrm{2}} −\mathrm{2}}{\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\frac{\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}{\mid\lambda−\mathrm{1}\mid}\:{du} \\ $$$$=\frac{\mathrm{2}\left(\lambda−\mathrm{1}\right)^{\mathrm{2}} }{\left(\lambda−\mathrm{1}\right)\mid\lambda−\mathrm{1}\mid}\:\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}\:\:\left[{arctanu}\right]_{\frac{{s}\left(\lambda\right)}{\:\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}} ^{+\infty} \\ $$$${A}_{\lambda} =\mathrm{2}{s}\left(\lambda−\mathrm{1}\right)\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}\:\:\left(\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{{s}\left(\lambda\right)}{\:\sqrt{\lambda^{\mathrm{2}} −\mathrm{2}}}\right)\right) \\ $$$${with}\:{s}\left({x}\right)\:=\mathrm{1}\:{if}\:{x}>\mathrm{0}\:{and}\:{s}\left({x}\right)=−\mathrm{1}\:{if}\:{x}<\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 23/Jul/19
$$\left.\mathrm{2}\right)\:{we}\:{have}\:\frac{{dA}_{\lambda} }{{d}\lambda}\:=−\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\left(\lambda\:+{cosx}\:+{sinx}\right)^{\mathrm{2}} }\:=−{B}_{\lambda} \:\Rightarrow \\ $$$${B}_{\lambda} \:=−{A}_{\lambda} ^{'} \:\:\:\:\:\:{rest}\:{to}\:{calculate}\:{A}_{\lambda} ^{'} …. \\ $$
Commented by mathmax by abdo last updated on 23/Jul/19
$$\left.\mathrm{3}\right)\:{let}\:{calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\mathrm{2}+{cosx}\:+{sinx}}\:\:\:{here}\:\lambda\:=\mathrm{2}\:\:{and} \\ $$$$\mathrm{2}−\lambda^{\mathrm{2}} =−\mathrm{2}<\mathrm{0}\:\:\Rightarrow\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{2}+{cosx}\:+{sinx}}\:={A}_{\mathrm{2}} \\ $$$$=\mathrm{2}{s}\left(\mathrm{1}\right)\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{2}}\left\{\:\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{{s}\left(\mathrm{2}\right)}{\:\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{2}}}\right)\right\} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\left\{\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right\}\:=\pi\sqrt{\mathrm{2}}\:−\mathrm{2}\sqrt{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\sqrt{\mathrm{2}}\right)\right) \\ $$$$=\pi\sqrt{\mathrm{2}}−\pi\sqrt{\mathrm{2}}\:+\mathrm{2}\sqrt{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{2}}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\mathrm{2}+{cosx}\:+{sinx}}\:=\mathrm{2}\sqrt{\mathrm{2}}{arctan}\left(\sqrt{\mathrm{2}}\right)\:. \\ $$