Menu Close

let-A-1-0-0-0-2-9-0-1-4-1-calculate-A-I-3-2-conclude-A-n-for-n-integr-




Question Number 50386 by Abdo msup. last updated on 16/Dec/18
let A = (((1    0     0)),((0    −2  −9)) )                    (0        1      4 )  1) calculate (A−I)^3   2) conclude  A^n  for n  integr.
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:−\mathrm{2}\:\:−\mathrm{9}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{4}\:\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\left({A}−{I}\right)^{\mathrm{3}} \\ $$$$\left.\mathrm{2}\right)\:{conclude}\:\:{A}^{{n}} \:{for}\:{n}\:\:{integr}. \\ $$
Answered by kaivan.ahmadi last updated on 16/Dec/18
A−I= (((0      0         0)),((0   −3   −9)) )                   (0     1         3)  (A−I)^2 = (((0    0     0)),((0     0     0)) )                         (0      0    0)  ⇒(A−I)^3 =0
$$\mathrm{A}−\mathrm{I}=\begin{pmatrix}{\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:−\mathrm{3}\:\:\:−\mathrm{9}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{0}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{3}\right) \\ $$$$\left(\mathrm{A}−\mathrm{I}\right)^{\mathrm{2}} =\begin{pmatrix}{\mathrm{0}\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{0}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\mathrm{0}\right) \\ $$$$\Rightarrow\left(\mathrm{A}−\mathrm{I}\right)^{\mathrm{3}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *