Menu Close

let-A-1-1-1-1-1-calculate-A-1-and-A-2-2-calculate-A-n-3-find-e-A-and-e-A-




Question Number 93415 by abdomathmax last updated on 13/May/20
let  A = (((1        −1)),((1            1)) )  1) calculate A^(−1)  and A^(−2)   2) calculate A^n   3) find e^A  and e^(−A)
letA=(1111)1)calculateA1andA22)calculateAn3)findeAandeA
Commented by prakash jain last updated on 13/May/20
det(A−λI)= determinant (((1−λ),(−1)),(1,(1−λ)))  =(1−λ)^2 +1=0  λ=1−i,1+i  (i=(√(−1)))  Eigenvector for λ=1−i  (A−λI) [(x_1 ),(x_2 ) ]=0  ( [(1,(−1)),(1,1) ]− [((1−i),0),(0,(1−i)) ]) [(x_1 ),(x_2 ) ]=0   [(i,(−1)),(1,i) ] [(x_1 ),(x_2 ) ]=0  ix_1 −x_2 =0  x_1 +ix_2 =0  x_1 =1,x_2 =i  ( [(1,(−1)),(1,1) ]− [((1+i),0),(0,(1+i)) ]) [(y_1 ),(y_2 ) ]=0   [((−i),(−1)),(1,(−i)) ] [(y_1 ),(y_2 ) ]=0  −iy_1 −y_2 =0  y_1 −iy_2 =0  y_1 =1, y_2 =−i  S= [(1,1),((−i),i) ]  S^(−1) = [((1/2),(i/2)),((1/2),(−i/2)) ]  S^(−1) AS= [((1+i),0),(0,(1−i)) ]  A=S [((1+i),0),(0,(1−i)) ]S^(−1)   A^n =S [(((1+i)^n ),0),(0,((1−i)^n )) ]S^(−1)   A^n = [(1,1),((−i),i) ] [(((1−i)^n ),0),(0,((1+i)^n )) ] [((1/2),(i/2)),((1/2),(−i/2)) ]  =(1/2) [(((1−i)^n +(1+i)^n ),(−i((1−i)^n −(1+i))^n  )),((i((1−i)^n −(1+i)^n )),((1−i)^n +(1+i)^n )) ]
det(AλI)=|1λ111λ|=(1λ)2+1=0λ=1i,1+i(i=1)Eigenvectorforλ=1i(AλI)[x1x2]=0([1111][1i001i])[x1x2]=0[i11i][x1x2]=0ix1x2=0x1+ix2=0x1=1,x2=i([1111][1+i001+i])[y1y2]=0[i11i][y1y2]=0iy1y2=0y1iy2=0y1=1,y2=iS=[11ii]S1=[1/2i/21/2i/2]S1AS=[1+i001i]A=S[1+i001i]S1An=S[(1+i)n00(1i)n]S1An=[11ii][(1i)n00(1+i)n][1/2i/21/2i/2]=12[(1i)n+(1+i)ni((1i)n(1+i))ni((1i)n(1+i)n)(1i)n+(1+i)n]
Commented by mathmax by abdo last updated on 13/May/20
thank you sir.
thankyousir.
Commented by mathmax by abdo last updated on 13/May/20
1) p_c (x) =det(A−xI) = determinant (((1−x      −1)),((1            1−x)))=(1−x)^2 +1  =x^2 −2x+2   csyley hamilton theorem ⇒A^2 −2A +2I =0 ⇒  A(A−2I) =−2I ⇒A×(−(1/2))(A−2I) =I ⇒ A is inversible   and A^(−1)  =−(1/2)A +I = (((−(1/2)       (1/2))),((−(1/2)        −(1/2))) )+ (((1        0)),((0         1)) )  A^(−1)  = ((((1/2)           (1/2))),((−(1/2)         (1/2))) )    and A^(−2)  =(A^(−1) )^2
1)pc(x)=det(AxI)=|1x111x|=(1x)2+1=x22x+2csyleyhamiltontheoremA22A+2I=0A(A2I)=2IA×(12)(A2I)=IAisinversibleandA1=12A+I=(12121212)+(1001)A1=(12121212)andA2=(A1)2
Commented by mathmax by abdo last updated on 13/May/20
2) we have P_c (x) =det(A−xI) =x^2 −2x +2  P_c (x)=0 ⇔(x−1)^2 +1 =0 ⇔(x−1)^2  =−1 ⇒x =1+i  or x=1−i  let divide x^n  by P_c (x) ⇒x^n  =Q(x)P_c (x) +u_n x +v_n   ⇒(1+i)^n  =u_n (1+i)+v_n     ⇒(1+i−1+i)u_n =(1+i)^n −(1−i)^n   (1−i)^n  =u_n (1−i) +v_n   ⇒u_n =(1/(2i)){(1+i)^n −(1−i)^n } =(1/(2i)){  ((√2))^n  e^((inπ)/4) −((√2))^n  e^(−i((nπ)/4)) }  =((√2))^n  sin(((nπ)/4))  (1+i)^n  +(1−i)^n  =2u_n +2v_n  ⇒u_n +v_n =(1/2){ (1+i)^n  +(1−i)^n }  =((√2))^(n ) cos(((nπ)/4)) ⇒v_n =((√2))^n  cos(((nπ)/4))−((√2))^n  sin(((nπ)/4))  we have Pc(A)=0  ⇒A^n  =u_(n )  A +v_n  I  =((√2))^n  sin(((nπ)/4)) (((1           −1)),((1                 1)) )  +((√2))^n (cos(((nπ)/4))−sin(((nπ)/4)) (((1      0)),((0       1)) )  A^n  = (((((√2))^n  cos(((nπ)/4))                                                                        −((√2))^(n ) sin(((nπ)/4)))),((((√2))^n  sin(((nπ)/4))                                                                                 ((√2))^n  cos(((nπ)/4)           )) )
2)wehavePc(x)=det(AxI)=x22x+2Pc(x)=0(x1)2+1=0(x1)2=1x=1+iorx=1iletdividexnbyPc(x)xn=Q(x)Pc(x)+unx+vn(1+i)n=un(1+i)+vn(1+i1+i)un=(1+i)n(1i)n(1i)n=un(1i)+vnun=12i{(1+i)n(1i)n}=12i{(2)neinπ4(2)neinπ4}=(2)nsin(nπ4)(1+i)n+(1i)n=2un+2vnun+vn=12{(1+i)n+(1i)n}=(2)ncos(nπ4)vn=(2)ncos(nπ4)(2)nsin(nπ4)wehavePc(A)=0An=unA+vnI=(2)nsin(nπ4)(1111)+(2)n(cos(nπ4)sin(nπ4)(1001)An=((2)ncos(nπ4)(2)nsin(nπ4)(2)nsin(nπ4)(2)ncos(nπ4)
Commented by mathmax by abdo last updated on 13/May/20
⇒ A^n  = (((((√2))^n  cos(((nπ)/4))            −((√2))^n  sin(((nπ)/4)))),((((√2))^n  sin(((nπ)/4))                  ((√2))^n  cos(((nπ)/4)))) )
An=((2)ncos(nπ4)(2)nsin(nπ4)(2)nsin(nπ4)(2)ncos(nπ4))

Leave a Reply

Your email address will not be published. Required fields are marked *