Question Number 93415 by abdomathmax last updated on 13/May/20

Commented by prakash jain last updated on 13/May/20
![det(A−λI)= determinant (((1−λ),(−1)),(1,(1−λ))) =(1−λ)^2 +1=0 λ=1−i,1+i (i=(√(−1))) Eigenvector for λ=1−i (A−λI) [(x_1 ),(x_2 ) ]=0 ( [(1,(−1)),(1,1) ]− [((1−i),0),(0,(1−i)) ]) [(x_1 ),(x_2 ) ]=0 [(i,(−1)),(1,i) ] [(x_1 ),(x_2 ) ]=0 ix_1 −x_2 =0 x_1 +ix_2 =0 x_1 =1,x_2 =i ( [(1,(−1)),(1,1) ]− [((1+i),0),(0,(1+i)) ]) [(y_1 ),(y_2 ) ]=0 [((−i),(−1)),(1,(−i)) ] [(y_1 ),(y_2 ) ]=0 −iy_1 −y_2 =0 y_1 −iy_2 =0 y_1 =1, y_2 =−i S= [(1,1),((−i),i) ] S^(−1) = [((1/2),(i/2)),((1/2),(−i/2)) ] S^(−1) AS= [((1+i),0),(0,(1−i)) ] A=S [((1+i),0),(0,(1−i)) ]S^(−1) A^n =S [(((1+i)^n ),0),(0,((1−i)^n )) ]S^(−1) A^n = [(1,1),((−i),i) ] [(((1−i)^n ),0),(0,((1+i)^n )) ] [((1/2),(i/2)),((1/2),(−i/2)) ] =(1/2) [(((1−i)^n +(1+i)^n ),(−i((1−i)^n −(1+i))^n )),((i((1−i)^n −(1+i)^n )),((1−i)^n +(1+i)^n )) ]](https://www.tinkutara.com/question/Q93420.png)
Commented by mathmax by abdo last updated on 13/May/20

Commented by mathmax by abdo last updated on 13/May/20

Commented by mathmax by abdo last updated on 13/May/20

Commented by mathmax by abdo last updated on 13/May/20
