Menu Close

let-A-1-1-1-1-1-calculate-A-n-2-determine-e-A-and-e-A-




Question Number 60501 by prof Abdo imad last updated on 21/May/19
let A = ((( 1          1)),((1            1)) )  1)calculate A^n   2) determine e^A    and e^(−A)  .
letA=(1111)1)calculateAn2)determineeAandeA.
Commented by maxmathsup by imad last updated on 21/May/19
we P_c (A) = determinant (((1−x           1)),((1              1−x)))=(1−x)^2 −1 =x^2 −2x +1−1 =x^2 −2x  cayley hamilton theorem give P_c (A)=0 ⇒A^2 −2A =0 ⇒A^2  =2A ⇒  A^3  =2A^2  =2^2  A ⇒ A^n  =2^(n−1)  A ⇒ A^n  = (((2^(n−1)         2^(n−1) )),((2^(n−1)          2^(n−1) )) )      n≥1  2)  we have  e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =I +Σ_(n=1) ^∞ (1/(n!)) (((2^(n−1)        2^(n−1) )),((2^(n−1)         2^(n−1) )) )  =I   +   (((Σ_(n=1) ^∞   (2^(n−1) /(n!))                Σ_(n=1) ^∞   (2^(n−1) /(n!)))),((Σ_(n=1) ^∞   (2^(n−1) /(n!))                  Σ_(n=1) ^∞   (2^(n−1) /(n!)))) )  Σ_(n=1) ^∞   (2^(n−1) /(n!)) =(1/2) Σ_(n=1) ^∞   (2^n /(n!)) =(1/2){ Σ_(n=0) ^∞  (2^n /(n!)) −1} =(1/2){e^2 −1}⇒  e^A  =  (((1            0)),((0             1)) )  +   (((((e^2 −1)/2)                    ((e^2 −1)/2))),((((e^2 −1)/2)                     ((e^2 −1)/2))) )  e^A  = (((((1+e^2 )/2)                  ((e^2 −1)/2))),((((e^2 −1)/2)                   ((1+e^2 )/2))) )  also we calculate e^(−A)     by folowing   the same steps   and use  e^(−A)  =Σ_(n=0) ^∞  (((−1)^n  A^n )/(n!))
wePc(A)=|1x111x|=(1x)21=x22x+11=x22xcayleyhamiltontheoremgivePc(A)=0A22A=0A2=2AA3=2A2=22AAn=2n1AAn=(2n12n12n12n1)n12)wehaveeA=n=0Ann!=I+n=11n!(2n12n12n12n1)=I+(n=12n1n!n=12n1n!n=12n1n!n=12n1n!)n=12n1n!=12n=12nn!=12{n=02nn!1}=12{e21}eA=(1001)+(e212e212e212e212)eA=(1+e22e212e2121+e22)alsowecalculateeAbyfolowingthesamestepsanduseeA=n=0(1)nAnn!
Answered by Prithwish sen last updated on 21/May/19
Is,  A^n = (((2^(n−1)   2^(n−1) )),((2^(n−1)    2^(n−1) )) )
Is,An=(2n12n12n12n1)

Leave a Reply

Your email address will not be published. Required fields are marked *