Menu Close

let-A-1-1-2-3-1-find-A-1-2-calculate-A-n-3-determine-e-A-and-e-2A-




Question Number 60500 by prof Abdo imad last updated on 21/May/19
let A = (((1       1)),((−2   3)) )  1) find A^(−1)   2) calculate A^n   3) determine e^A    and e^(−2A)  .
letA=(1123)1)findA12)calculateAn3)determineeAande2A.
Commented by maxmathsup by imad last updated on 22/May/19
2) we have P_c (A) =det(A−xI)= determinant (((1−x            1)),((−2          3−x)))=(1−x)(3−x) +2=3−x−3x+x^2  +2  =x^2 −4x+5     P_c (A)=0 ⇒x^2 −4x +5 =0→Δ^′ =4−5 =−1 =i^2  ⇒  x_1 =2+i    and x_2 =2−i  v(x_1 )=Ker(A−x_1 I) ={u /(A−x_1 )u=0}  let u  ((x),(y) )  (A−x_1 ) ((x),(y) ) =0 ⇒ (((−1−i          1)),((−2            1−i)) ) ((x),(y) )= ((0),(0) ) ⇒ {_(−2+(1−i)y =0) ^((−1−i)x+y =o)   Δ_s = determinant (((−1−i          1)),((−2             1−i)))=−(1+i)(1−i)+2 =−(2) +2 =0 ⇒  y=(1+i)x ⇒(x,y) =(x,(1+i)x) =xe_1    with  e_1  ((1),((1+i)) )  v(x_2 ) = Ker (A−x_2 I) ={u/(A−x_2 I)u=0}  let u ((x),(y) )  (A−x_2 I)u =0 ⇒ (((−1+i         1)),((−2            1+i)) ) ((x),(y) )= ((0),(0) )  ⇒{_(−2x +(1+i)y =0) ^((−1+i)x +y =0)    ⇒  Δ_s = determinant (((−1+i          1)),((−2            1+i)))=−(1−i)(1+i)+2 =0 ⇒y=(1−i)x ⇒  (x,y) =(x,(1−i)x) =x(1,1−i) ⇒e_2  ((1),((1−i )) ) ⇒M_p = (((1             1)),((1+i       1−i)) )=P  and  D = (((2+i          0)),((0            2−i)) )  we have A =P DP^(−1)   ⇒ A^n  =PD^n P^(−1)     P^(−1)  =((t(com(P)))/(det P))                 det P =1−i−(1+i) =1−i−1−i =−2i  com(P) =(−1)^(i+j) A_(ij)    (((α_(11)            α_(12) )),((α_2 1            α_(22) )) )  α_(11) =1−i     ,    α_(21) =−(1)        ,   α_(12) =−(1+i)     ,  α_(22) =1 ⇒  com(P) = (((1−i         −1−i )),((−1               1)) ) ⇒t(com(P)) =  (((1−i               −1)),((−1−i               1)) )  ⇒  P^(−1)  =−(1/(2i)) (((1−i            −1)),((−1−i            1)) ) =   (((((−1+i)/(2i))         (1/(2i)))),((((1+i)/(2i))                   ((−1)/(2i)))) )  = (((((−i−1)/(−2))            (i/(−2)))),((((i−1)/(−2))                 ((−i)/(−2)))) ) = (((((1+i)/2)             ((−i)/2))),((((1−i)/2)               (i/2))) )  A^n  =(1/2)  (((1               1)),((1+i        1−i)) ) ((((2+i)^n             0)),((0              (2−i)^n )) ) (((1+i       −i)),((1−i         i)) )  rest to finish  the calculus....
2)wehavePc(A)=det(AxI)=|1x123x|=(1x)(3x)+2=3x3x+x2+2=x24x+5Pc(A)=0x24x+5=0Δ=45=1=i2x1=2+iandx2=2iv(x1)=Ker(Ax1I)={u/(Ax1)u=0}letu(xy)(Ax1)(xy)=0(1i121i)(xy)=(00){2+(1i)y=0(1i)x+y=oΔs=|1i121i|=(1+i)(1i)+2=(2)+2=0y=(1+i)x(x,y)=(x,(1+i)x)=xe1withe1(11+i)v(x2)=Ker(Ax2I)={u/(Ax2I)u=0}letu(xy)(Ax2I)u=0(1+i121+i)(xy)=(00){2x+(1+i)y=0(1+i)x+y=0Δs=|1+i121+i|=(1i)(1+i)+2=0y=(1i)x(x,y)=(x,(1i)x)=x(1,1i)e2(11i)Mp=(111+i1i)=PandD=(2+i002i)wehaveA=PDP1An=PDnP1P1=t(com(P))detPdetP=1i(1+i)=1i1i=2icom(P)=(1)i+jAij(α11α12α21α22)α11=1i,α21=(1),α12=(1+i),α22=1com(P)=(1i1i11)t(com(P))=(1i11i1)P1=12i(1i11i1)=(1+i2i12i1+i2i12i)=(i12i2i12i2)=(1+i2i21i2i2)An=12(111+i1i)((2+i)n00(2i)n)(1+ii1ii)resttofinishthecalculus.
Commented by maxmathsup by imad last updated on 22/May/19
1)  we have P_c (X) = x^2 −4x +5     cayley hamilton theorem give  P_c (A) =0 ⇒A^2 −4A +5I =0  ⇒A^2  =4A −5I ⇒A =4I −5 A^(−1)  ⇒  5A^(−1)  =−A +4I   =− (((1         1)),((−2     3)) ) + (((4         0)),((0         4)) )  =  (((3             −1)),((2                  1)) )  ⇒ A^(−1)  =  ((((3/5)           ((−1)/5))),(((2/5)                (1/5))) )     but first wd must verify  that  detA≠0 !
1)wehavePc(X)=x24x+5cayleyhamiltontheoremgivePc(A)=0A24A+5I=0A2=4A5IA=4I5A15A1=A+4I=(1123)+(4004)=(3121)A1=(35152515)butfirstwdmustverifythatdetA0!

Leave a Reply

Your email address will not be published. Required fields are marked *