let-A-1-1-2-3-1-find-A-1-2-calculate-A-n-3-determine-e-A-and-e-2A- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 60500 by prof Abdo imad last updated on 21/May/19 letA=(11−23)1)findA−12)calculateAn3)determineeAande−2A. Commented by maxmathsup by imad last updated on 22/May/19 2)wehavePc(A)=det(A−xI)=|1−x1−23−x|=(1−x)(3−x)+2=3−x−3x+x2+2=x2−4x+5Pc(A)=0⇒x2−4x+5=0→Δ′=4−5=−1=i2⇒x1=2+iandx2=2−iv(x1)=Ker(A−x1I)={u/(A−x1)u=0}letu(xy)(A−x1)(xy)=0⇒(−1−i1−21−i)(xy)=(00)⇒{−2+(1−i)y=0(−1−i)x+y=oΔs=|−1−i1−21−i|=−(1+i)(1−i)+2=−(2)+2=0⇒y=(1+i)x⇒(x,y)=(x,(1+i)x)=xe1withe1(11+i)v(x2)=Ker(A−x2I)={u/(A−x2I)u=0}letu(xy)(A−x2I)u=0⇒(−1+i1−21+i)(xy)=(00)⇒{−2x+(1+i)y=0(−1+i)x+y=0⇒Δs=|−1+i1−21+i|=−(1−i)(1+i)+2=0⇒y=(1−i)x⇒(x,y)=(x,(1−i)x)=x(1,1−i)⇒e2(11−i)⇒Mp=(111+i1−i)=PandD=(2+i002−i)wehaveA=PDP−1⇒An=PDnP−1P−1=t(com(P))detPdetP=1−i−(1+i)=1−i−1−i=−2icom(P)=(−1)i+jAij(α11α12α21α22)α11=1−i,α21=−(1),α12=−(1+i),α22=1⇒com(P)=(1−i−1−i−11)⇒t(com(P))=(1−i−1−1−i1)⇒P−1=−12i(1−i−1−1−i1)=(−1+i2i12i1+i2i−12i)=(−i−1−2i−2i−1−2−i−2)=(1+i2−i21−i2i2)An=12(111+i1−i)((2+i)n00(2−i)n)(1+i−i1−ii)resttofinishthecalculus…. Commented by maxmathsup by imad last updated on 22/May/19 1)wehavePc(X)=x2−4x+5cayleyhamiltontheoremgivePc(A)=0⇒A2−4A+5I=0⇒A2=4A−5I⇒A=4I−5A−1⇒5A−1=−A+4I=−(11−23)+(4004)=(3−121)⇒A−1=(35−152515)butfirstwdmustverifythatdetA≠0! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-191569Next Next post: let-f-x-arctan-2x-ln-1-x-2-1-calculate-f-x-2-determine-f-n-x-and-f-n-0-3-developp-f-at-integr-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.