Menu Close

Let-a-1-1-2-a-k-1-a-k-2-a-k-k-1-then-a-101-is-greater-than-a-1-b-2-c-3-d-4-




Question Number 31726 by rahul 19 last updated on 13/Mar/18
Let a_1 = (1/2) , a_(k+1) =a_k ^2 +a_k ∀ k≥ 1.  then a_(101)   is greater than  a) 1   b) 2  c) 3  d) 4 .
$${Let}\:{a}_{\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{2}}\:,\:{a}_{{k}+\mathrm{1}} ={a}_{{k}} ^{\mathrm{2}} +{a}_{{k}} \forall\:{k}\geqslant\:\mathrm{1}. \\ $$$${then}\:{a}_{\mathrm{101}} \:\:{is}\:{greater}\:{than} \\ $$$$\left.{a}\right)\:\mathrm{1}\: \\ $$$$\left.{b}\right)\:\mathrm{2} \\ $$$$\left.{c}\right)\:\mathrm{3} \\ $$$$\left.{d}\right)\:\mathrm{4}\:. \\ $$
Commented by mrW2 last updated on 13/Mar/18
a_(101) >2×10^(17) >>4!
$${a}_{\mathrm{101}} >\mathrm{2}×\mathrm{10}^{\mathrm{17}} >>\mathrm{4}! \\ $$
Commented by rahul 19 last updated on 13/Mar/18
sir how u get a_(101) >2×10^(17) ?
$${sir}\:{how}\:{u}\:{get}\:{a}_{\mathrm{101}} >\mathrm{2}×\mathrm{10}^{\mathrm{17}} ? \\ $$
Commented by MJS last updated on 13/Mar/18
a_1 =(1/2); a_2 =(3/4); a_3 =((21)/(16)); a_4 =((777)/(256));  a_5 =((802641)/(65536))≈12>4;  a_(k+1) >a_k  ⇒ a_k >4∀k≧5
$${a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}};\:{a}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}};\:{a}_{\mathrm{3}} =\frac{\mathrm{21}}{\mathrm{16}};\:{a}_{\mathrm{4}} =\frac{\mathrm{777}}{\mathrm{256}}; \\ $$$$\mathrm{a}_{\mathrm{5}} =\frac{\mathrm{802641}}{\mathrm{65536}}\approx\mathrm{12}>\mathrm{4}; \\ $$$${a}_{{k}+\mathrm{1}} >{a}_{{k}} \:\Rightarrow\:{a}_{{k}} >\mathrm{4}\forall{k}\geqq\mathrm{5} \\ $$
Answered by mrW2 last updated on 13/Mar/18
a_(k+1) =a_k ^2 +a_k >a_k >0  (a_(k+1) /a_k )=1+a_k   (a_(101) /a_(100) )=1+a_(100)   (a_(100) /a_(99) )=1+a_(99)   ...  (a_2 /a_1 )=1+a_1   ⇒(a_(101) /a_1 )=(1+a_1 )(1+a_2 )...(1+a_(100) )>(1+a_1 )^(100)   ⇒a_(101) >a_1 (1+a_1 )^(100) =(1/2)×((3/2))^(100) >2×10^(17)
$${a}_{{k}+\mathrm{1}} ={a}_{{k}} ^{\mathrm{2}} +{a}_{{k}} >{a}_{{k}} >\mathrm{0} \\ $$$$\frac{{a}_{{k}+\mathrm{1}} }{{a}_{{k}} }=\mathrm{1}+{a}_{{k}} \\ $$$$\frac{{a}_{\mathrm{101}} }{{a}_{\mathrm{100}} }=\mathrm{1}+{a}_{\mathrm{100}} \\ $$$$\frac{{a}_{\mathrm{100}} }{{a}_{\mathrm{99}} }=\mathrm{1}+{a}_{\mathrm{99}} \\ $$$$… \\ $$$$\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }=\mathrm{1}+{a}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{101}} }{{a}_{\mathrm{1}} }=\left(\mathrm{1}+{a}_{\mathrm{1}} \right)\left(\mathrm{1}+{a}_{\mathrm{2}} \right)…\left(\mathrm{1}+{a}_{\mathrm{100}} \right)>\left(\mathrm{1}+{a}_{\mathrm{1}} \right)^{\mathrm{100}} \\ $$$$\Rightarrow{a}_{\mathrm{101}} >{a}_{\mathrm{1}} \left(\mathrm{1}+{a}_{\mathrm{1}} \right)^{\mathrm{100}} =\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{100}} >\mathrm{2}×\mathrm{10}^{\mathrm{17}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *