Menu Close

Let-a-1-1-2-a-k-1-a-k-2-a-k-k-1-then-a-101-is-greater-than-a-1-b-2-c-3-d-4-




Question Number 31726 by rahul 19 last updated on 13/Mar/18
Let a_1 = (1/2) , a_(k+1) =a_k ^2 +a_k ∀ k≥ 1.  then a_(101)   is greater than  a) 1   b) 2  c) 3  d) 4 .
Leta1=12,ak+1=ak2+akk1.thena101isgreaterthana)1b)2c)3d)4.
Commented by mrW2 last updated on 13/Mar/18
a_(101) >2×10^(17) >>4!
a101>2×1017>>4!
Commented by rahul 19 last updated on 13/Mar/18
sir how u get a_(101) >2×10^(17) ?
sirhowugeta101>2×1017?
Commented by MJS last updated on 13/Mar/18
a_1 =(1/2); a_2 =(3/4); a_3 =((21)/(16)); a_4 =((777)/(256));  a_5 =((802641)/(65536))≈12>4;  a_(k+1) >a_k  ⇒ a_k >4∀k≧5
a1=12;a2=34;a3=2116;a4=777256;a5=8026416553612>4;ak+1>akak>4k5
Answered by mrW2 last updated on 13/Mar/18
a_(k+1) =a_k ^2 +a_k >a_k >0  (a_(k+1) /a_k )=1+a_k   (a_(101) /a_(100) )=1+a_(100)   (a_(100) /a_(99) )=1+a_(99)   ...  (a_2 /a_1 )=1+a_1   ⇒(a_(101) /a_1 )=(1+a_1 )(1+a_2 )...(1+a_(100) )>(1+a_1 )^(100)   ⇒a_(101) >a_1 (1+a_1 )^(100) =(1/2)×((3/2))^(100) >2×10^(17)
ak+1=ak2+ak>ak>0ak+1ak=1+aka101a100=1+a100a100a99=1+a99a2a1=1+a1a101a1=(1+a1)(1+a2)(1+a100)>(1+a1)100a101>a1(1+a1)100=12×(32)100>2×1017

Leave a Reply

Your email address will not be published. Required fields are marked *