Menu Close

let-A-1-2-1-1-1-calculste-A-n-2-determine-e-A-and-e-2A-3-find-cos-A-and-sinA-is-cos-2-A-sin-2-A-I-4-determine-sh-A-and-ch-A-is-ch-2-A-sh-2-A-I-




Question Number 91268 by mathmax by abdo last updated on 29/Apr/20
let A = (((1       2)),((1     −1)) )  1) calculste A^n   2) determine  e^A   and e^(−2A)   3)find cos(A)and sinA   is cos^2 A +sin^2 A =I?  4) determine sh(A) and ch(A)  is ch^2 A−sh^2 A =I  ?
letA=(1211)1)calculsteAn2)determineeAande2A3)findcos(A)andsinAiscos2A+sin2A=I?4)determinesh(A)andch(A)isch2Ash2A=I?
Commented by mathmax by abdo last updated on 29/Apr/20
1) the caracteristic polynom is p(x)=det (A−xI)  = determinant (((1−x        2)),((1           −1−x)))=−(1+x)(1−x)−2 =−(1−x^2 )−2  =−1+x^2 −2 =x^2 −3 =(x−(√3))(x+(√3))  p(x)=0 ⇔x =+^− (√3)  x^n  =Qp(x)+u_n x +v_n  ⇒((√3))^n  =u_n (√3)+v_n   (−(√3))^n  =−(√3)u_n  +v_n  ⇒((√3))^n −(−(√3))^n  =2(√3)u_n  ⇒  u_n =((((√3))^n −(−(√3))^n )/(2(√3))) and  ((√3))^n  +(−(√3))^n  =2v_n  ⇒  v_n =((((√3))^n  +(−(√3))^n )/2)  A^n  =Q(A)p(A)+u_n  A +v_n I    =u_n A +v_n I   (P(A)=0 by cayley hamiton)  ⇒A^n  =((((√3))^n −(−(√3))^n )/(2(√3))) (((1         2)),((1        −1)) ) +((((√3))^n +(−(√3))^n )/2) (((1       0)),((0         1)) )  A^n  = (((((((√3))^n −(−(√3))^n )/(2(√3)))                 ((((√3))^n −(−(√3))^n )/( (√3))))),((((((√3))^n −(−(√3))^n )/(2(√3)))                   (((−(√3))^n −((√3))^n )/(2(√3))))) )  + (((((((√3))^n  +(−(√3))^n )/2)                0)),((0                                 ((((√3))^n +(−(√3))^n )/2))) )  = (((((((√3))^n −(−(√3))^n  +((√3))((√3))^n +(√3)(−(√3))^n )/(2(√3)))             ((((√3))^n −(−(√3))^n )/( (√3))))),((((((√3))^n −(−(√3))^n )/(2(√3)))                                        (((−(√3))^n −((√3))^n  +(√3)((√3))^n +(√3)(−(√3))^n )/(2(√3))))) )  A^n  = ((((((1+(√3))((√3))^n +((√3)−1)(−(√3))^n )/(2(√3)))               ((((√3))^n −(−(√3))^n )/( (√3))))),((((((√3))^n −(−(√3))^n )/(2(√3)))                                    ((((√3)−1)((√3))^n +(1+(√3))(−(√3))^n )/(2(√3))))) )
1)thecaracteristicpolynomisp(x)=det(AxI)=|1x211x|=(1+x)(1x)2=(1x2)2=1+x22=x23=(x3)(x+3)p(x)=0x=+3xn=Qp(x)+unx+vn(3)n=un3+vn(3)n=3un+vn(3)n(3)n=23unun=(3)n(3)n23and(3)n+(3)n=2vnvn=(3)n+(3)n2An=Q(A)p(A)+unA+vnI=unA+vnI(P(A)=0bycayleyhamiton)An=(3)n(3)n23(1211)+(3)n+(3)n2(1001)An=((3)n(3)n23(3)n(3)n3(3)n(3)n23(3)n(3)n23)+((3)n+(3)n200(3)n+(3)n2)=((3)n(3)n+(3)(3)n+3(3)n23(3)n(3)n3(3)n(3)n23(3)n(3)n+3(3)n+3(3)n23)An=((1+3)(3)n+(31)(3)n23(3)n(3)n3(3)n(3)n23(31)(3)n+(1+3)(3)n23)
Commented by mathmax by abdo last updated on 29/Apr/20
A^(2p)  =   ((((((1+(√3))3^p +((√3)−1)3^p )/(2(√3)))                  0)),((0                                       ((((√3)−1)3^p  +(1+(√3))3^p )/(2(√3))))) )  = (((3^p                0)),((0             3^p )) )  A^(2p+1)   = ((((((1+(√3))(√3)3^p  +((√3)−1)(−(√3))3^p )/(2(√3)))                 (((√3)3^p  −(−(√3))3^p )/( (√3))))),(((((√3)3^p −(−(√3))3^p )/(2(√3)))                                           ((((√3)−1)(√3)3^p +(1+(√3))(−(√3))3^p )/(2(√3))))) )  = (((3^p                  2.3^p )),((2.3^p                −3^p )) )
A2p=((1+3)3p+(31)3p2300(31)3p+(1+3)3p23)=(3p003p)A2p+1=((1+3)33p+(31)(3)3p2333p(3)3p333p(3)3p23(31)33p+(1+3)(3)3p23)=(3p2.3p2.3p3p)
Commented by mathmax by abdo last updated on 29/Apr/20
sorry  A^(2p+1) = (((3^p               2 .3^p )),((3^p                  −3^p )) )
sorryA2p+1=(3p2.3p3p3p)
Commented by mathmax by abdo last updated on 29/Apr/20
2) e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =Σ_(n=0) ^∞  (A^(2n) /((2n)!)) +Σ_(n=0) ^∞  (A^(2n+1) /((2n+1)!))  =Σ_(n=0) ^∞  (1/((2n)!)) (((3^n         0)),((0           3^n )) )  +Σ_(n=0) ^∞  (1/((2n+1)!))  (((3^n           23^n )),((3^n           −3^n )) )  = (((Σ_(n=0) ^∞  (3^n /((2n)!))              0)),((0                           Σ_(n=0) ^∞  (3^n /((2n)!)))) ) + (((Σ_(n=0) ^∞  (3^n /((2n+1)!))        2Σ_(n=0) ^∞  (3^n /((2n+1)!)))),((Σ_(n=0) ^∞  (3^n /((2n+1)!))          −Σ_(n=0) ^∞  (3^n /((2n+1)!)))) )
2)eA=n=0Ann!=n=0A2n(2n)!+n=0A2n+1(2n+1)!=n=01(2n)!(3n003n)+n=01(2n+1)!(3n23n3n3n)=(n=03n(2n)!00n=03n(2n)!)+(n=03n(2n+1)!2n=03n(2n+1)!n=03n(2n+1)!n=03n(2n+1)!)
Commented by mathmax by abdo last updated on 29/Apr/20
we have Σ_(n=0) ^∞  (3^n /((2n)!)) =Σ_(n=0) ^∞   ((((√3))^(2n) )/((2n)!)) =cos((√3))  Σ_(n=0) ^∞  (3^n /((2n+1)!)) =(1/( (√3)))Σ_(n=0) ^∞  ((((√3))^(2n+1) )/((2n+1)!)) =(1/( (√3)))sin((√3)) ⇒  e^A  = (((cos((√3))         0)),((0                 cos((√3)))) )  + ((((1/( (√3)))sin((√3))          (2/( (√3)))sin((√3)))),(((1/( (√3)))sin((√3))            −(1/( (√3)))sin((√3)))) )  = (((cos((√3))+(1/( (√3)))sin((√3))             (2/( (√3)))sin((√3)))),(((1/( (√3)))sin((√3))                         cos((√3))−(1/( (√3) ))sin((√3)))) )
wehaven=03n(2n)!=n=0(3)2n(2n)!=cos(3)n=03n(2n+1)!=13n=0(3)2n+1(2n+1)!=13sin(3)eA=(cos(3)00cos(3))+(13sin(3)23sin(3)13sin(3)13sin(3))=(cos(3)+13sin(3)23sin(3)13sin(3)cos(3)13sin(3))

Leave a Reply

Your email address will not be published. Required fields are marked *