Question Number 130771 by mathmax by abdo last updated on 28/Jan/21

Answered by Olaf last updated on 28/Jan/21
![A = (((1 2)),((2 1)) ) A^2 = (((5 4)),((4 5)) ) = 2A+3I A^3 = AA^2 = A(2A+3I) = 7A+6I ... Let A^n = a_n A+b_n I, a_1 = 1, b_1 = 0 ⇒ A^(n+1) = AA^n = A(a_n A+b_n I) A^(n+1) = a_n A^2 +b_n A A^(n+1) = (2a_n +b_n )A+3a_n I ⇒ { ((a_(n+1) = 2a_n +b_n (1))),((b_(n+1) = 3a_n (2))) :} (1) : a_(n+2) = 2a_(n+1) +b_(n+1) a_(n+2) = 2a_(n+1) +3a_n , a_1 = 1, a_2 = 2 ⇒ a_n = (1/4)[3^n +(−1)^(n+1) ] (2) : b_n = 3a_(n−1) = (1/4)[3^n +3(−1)^n ] A^n = a_n A+b_n I A^n = (1/2) (((3^n +(−1)^n ),(3^n +(−1)^(n+1) )),((3^n +(−1)^(n+1) ),(3^n +(−1)^n )) ) A^(−n) = (1/2) ((((1/3^n )+(−1)^n ),((1/3^n )+(−1)^n )),(((1/3^n )+(−1)^n ),((1/3^n )+(−1)^n )) ) e^A = Σ_(n=0) ^∞ (1/(n!))A^n Σ_(n=0) ^∞ (3^n /(n!)) = e^3 , Σ_(n=0) ^∞ (1/(3^n n!)) = (1/e^3 ), Σ_(n=0) ^∞ (((−1)^n )/(n!)) = (1/e) e^A = (1/2) (((e^3 +(1/e)),(e^3 −(1/e))),((e^3 −(1/e)),(e^3 +(1/e))) ) e^(−A) = (1/2) ((((1/e^3 )+(1/e)),((1/e^3 )+(1/e))),(((1/e^3 )+(1/e)),((1/e^3 )+(1/e))) ) coshA = (1/2)(e^A +e^(−A) ) coshA = (1/4) (((e^3 +(1/e^3 )+(2/e)),(e^3 +(1/e^3 ))),((e^3 +(1/e^3 )),(e^3 +(1/e^3 )+(2/e))) ) sinhA = (1/2)(e^A −e^(−A) ) sinhA = (1/4) (((e^3 −(1/e^3 )),(e^3 −(1/e^3 )−(2/e))),((e^3 −(1/e^3 )−(2/e)),(e^3 −(1/e^3 ))) )](https://www.tinkutara.com/question/Q130783.png)
Commented by mathmax by abdo last updated on 29/Jan/21

Answered by mathmax by abdo last updated on 29/Jan/21

Commented by mathmax by abdo last updated on 29/Jan/21

Commented by mathmax by abdo last updated on 29/Jan/21
