Menu Close

let-A-1-2-2-1-1-find-e-A-and-e-A-2-calculate-ch-A-and-sh-A-




Question Number 130771 by mathmax by abdo last updated on 28/Jan/21
let A = (((1          2)),((2           1)) )  1)find e^A  and e^(−A)   2)calculate ch(A)and sh(A)
letA=(1221)1)findeAandeA2)calculatech(A)andsh(A)
Answered by Olaf last updated on 28/Jan/21
A = (((1          2)),((2           1)) )   A^2  = (((5          4)),((4           5)) )  = 2A+3I  A^3  = AA^2  = A(2A+3I) = 7A+6I  ...  Let A^n  = a_n A+b_n I, a_1  = 1, b_1  = 0  ⇒ A^(n+1)  = AA^n  = A(a_n A+b_n I)  A^(n+1)  = a_n A^2 +b_n A  A^(n+1)  = (2a_n +b_n )A+3a_n I  ⇒  { ((a_(n+1)  = 2a_n +b_n  (1))),((b_(n+1)  = 3a_n  (2))) :}  (1) : a_(n+2)  = 2a_(n+1) +b_(n+1)   a_(n+2)  = 2a_(n+1) +3a_n , a_1  = 1, a_2  = 2  ⇒ a_n  = (1/4)[3^n +(−1)^(n+1) ]  (2) : b_n  = 3a_(n−1)  = (1/4)[3^n +3(−1)^n ]  A^n  = a_n A+b_n I  A^n  = (1/2) (((3^n +(−1)^n ),(3^n +(−1)^(n+1) )),((3^n +(−1)^(n+1) ),(3^n +(−1)^n )) )  A^(−n)  = (1/2) ((((1/3^n )+(−1)^n ),((1/3^n )+(−1)^n )),(((1/3^n )+(−1)^n ),((1/3^n )+(−1)^n )) )  e^A  = Σ_(n=0) ^∞ (1/(n!))A^n   Σ_(n=0) ^∞ (3^n /(n!)) = e^3 , Σ_(n=0) ^∞ (1/(3^n n!)) = (1/e^3 ), Σ_(n=0) ^∞ (((−1)^n )/(n!)) = (1/e)  e^A  = (1/2) (((e^3 +(1/e)),(e^3 −(1/e))),((e^3 −(1/e)),(e^3 +(1/e))) )  e^(−A)  = (1/2) ((((1/e^3 )+(1/e)),((1/e^3 )+(1/e))),(((1/e^3 )+(1/e)),((1/e^3 )+(1/e))) )  coshA = (1/2)(e^A +e^(−A) )  coshA = (1/4) (((e^3 +(1/e^3 )+(2/e)),(e^3 +(1/e^3 ))),((e^3 +(1/e^3 )),(e^3 +(1/e^3 )+(2/e))) )  sinhA = (1/2)(e^A −e^(−A) )  sinhA = (1/4) (((e^3 −(1/e^3 )),(e^3 −(1/e^3 )−(2/e))),((e^3 −(1/e^3 )−(2/e)),(e^3 −(1/e^3 ))) )
A=(1221)A2=(5445)=2A+3IA3=AA2=A(2A+3I)=7A+6ILetAn=anA+bnI,a1=1,b1=0An+1=AAn=A(anA+bnI)An+1=anA2+bnAAn+1=(2an+bn)A+3anI{an+1=2an+bn(1)bn+1=3an(2)(1):an+2=2an+1+bn+1an+2=2an+1+3an,a1=1,a2=2an=14[3n+(1)n+1](2):bn=3an1=14[3n+3(1)n]An=anA+bnIAn=12(3n+(1)n3n+(1)n+13n+(1)n+13n+(1)n)An=12(13n+(1)n13n+(1)n13n+(1)n13n+(1)n)eA=n=01n!Ann=03nn!=e3,n=013nn!=1e3,n=0(1)nn!=1eeA=12(e3+1ee31ee31ee3+1e)eA=12(1e3+1e1e3+1e1e3+1e1e3+1e)coshA=12(eA+eA)coshA=14(e3+1e3+2ee3+1e3e3+1e3e3+1e3+2e)sinhA=12(eAeA)sinhA=14(e31e3e31e32ee31e32ee31e3)
Commented by mathmax by abdo last updated on 29/Jan/21
thank you sir Olaf
thankyousirOlaf
Answered by mathmax by abdo last updated on 29/Jan/21
1)p_c (A)=det(A−xI) = determinant (((1−x       2)),((2          1−x)))=(1−x)^2 −4  =(1−x−2)(1−x+2)=(−x−1)(3−x) =(x+1)(x−3)  ⇒λ_1 =−1 and λ_2 =3  x^n =q(x)p(x) +u_n x+v_n  we get  (−1)^n  =−u_n +v_n  and 3^n =3u_n  +v_n  ⇒   { ((−u_n  +v_n =(−1)^n )),((3u_n +v_n =3^n  ⇒ { ((4u_n =3^n −(−1)^n  ⇒ { ((u_n =((3^n −(−1)^n )/4))),((v_n =((3^n −(−1)^n )/4)+(−1)^n )) :})),((v_n =u_n  +(−1)^n )) :})) :}  ⇒ { ((u_n =((3^n −(−1)^n )/4))),((v_n =((3^(n ) +3(−1)^n )/4))) :}  A^n  =u_n  A +v_n I =((3^n −(−1)^n )/4) (((1         2)),((2          1)) )  +((3^n  +3(−1)^n )/4) (((1        0)),((0          1)) )  = (((((3^n −(−1)^n )/4)+((3^n +3(−1)^n )/4)                 ((3^n −(−1)^n )/2))),((((3^n −(−1)^n )/2)                                ((3^n −(−1)^n )/4)+((3^n  +3(−1)^n )/4))) )  = (((((2.3^n +2(−1)^n )/4)            ((3^n −(−1)^n )/2))),((((3^n −(−1)^n )/2)               ((2.3^n  +2(−1)^n )/4))) )  = (((((3^n +(−1)^n )/2)           ((3^n −(−1)^n )/2))),((((3^n −(−1)^n )/2)             ((3^n  +(−1)^n )/2))) )  e^A  =Σ_(n=0) ^∞  (A^n /(n!))  =(1/2) (((Σ_(n=0) ^∞  (3^n /(n!))+Σ_(n=0) ^∞  (((−1)^n )/(n!))      Σ_(n=0) ^∞  (3^n /(n!))−Σ_(n0) (((−1)^n )/(n!)))),(((.....)                                                         .....)) )  =(1/2) (((e^3   +e^(−1)             e^3 −e^(−1) )),((e^3 −e^(−1)               e^3  +e^(−1) )) )
1)pc(A)=det(AxI)=|1x221x|=(1x)24=(1x2)(1x+2)=(x1)(3x)=(x+1)(x3)λ1=1andλ2=3xn=q(x)p(x)+unx+vnweget(1)n=un+vnand3n=3un+vn{un+vn=(1)n3un+vn=3n{4un=3n(1)n{un=3n(1)n4vn=3n(1)n4+(1)nvn=un+(1)n{un=3n(1)n4vn=3n+3(1)n4An=unA+vnI=3n(1)n4(1221)+3n+3(1)n4(1001)=(3n(1)n4+3n+3(1)n43n(1)n23n(1)n23n(1)n4+3n+3(1)n4)=(2.3n+2(1)n43n(1)n23n(1)n22.3n+2(1)n4)=(3n+(1)n23n(1)n23n(1)n23n+(1)n2)eA=n=0Ann!=12(n=03nn!+n=0(1)nn!n=03nn!n0(1)nn!(..)..)=12(e3+e1e3e1e3e1e3+e1)
Commented by mathmax by abdo last updated on 29/Jan/21
e^(−A)  =Σ_(n=0) ^∞  (((−1)^n  A^n )/(n!))  =(1/2) (((Σ_(n=0) ^∞  (((−3)^n )/(n!))+Σ_(n=0) ^∞  (1/(n!))          Σ_(n=0) ^∞ (((−3)^n )/(n!))−Σ_(n=0) ^∞  (1/(n!)) )),(((.......)                                                         (.....))) )  =(1/2) (((e^(−3)  +e              e^(−3) −e)),((e^(−3) −e              e^(−3)  +e)) )
eA=n=0(1)nAnn!=12(n=0(3)nn!+n=01n!n=0(3)nn!n=01n!(.)(..))=12(e3+ee3ee3ee3+e)
Commented by mathmax by abdo last updated on 29/Jan/21
ch(A) =(1/2)(e^A  +e^(−A) ) =(1/4) (((e^3  +e^(−1)         e^3 −e^(−1) )),((e^3 −e^(−1)           e^3  +e^(−1) )) )  +(1/4) (((e^(−3)  +e          e^(−3) −e)),((e^(−3)  −e             e^(−3)  +e)) )  =(1/4) ((( e^3  +e^(−1)  +e^(−3)  +e               e^3 −e^(−1)  +e^(−3) −e)),((e^3 −e^(−1)  +e^(−3) −e                 e^3 +e^(−1)  +e^(−3) +e)) )
ch(A)=12(eA+eA)=14(e3+e1e3e1e3e1e3+e1)+14(e3+ee3ee3ee3+e)=14(e3+e1+e3+ee3e1+e3ee3e1+e3ee3+e1+e3+e)

Leave a Reply

Your email address will not be published. Required fields are marked *