Menu Close

Let-A-1-2-3-4-Number-of-functions-f-A-A-satisfying-f-f-x-x-x-A-is-




Question Number 34063 by rahul 19 last updated on 30/Apr/18
Let A= { 1,2,3,4 } . Number of functions  f:A→A satisfying f(f(x))=x ∀x∈A, is ?
$$\boldsymbol{\mathrm{L}}\mathrm{et}\:\mathrm{A}=\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4}\:\right\}\:.\:\mathrm{N}{umber}\:\mathrm{of}\:\mathrm{functions} \\ $$$$\mathrm{f}:\mathrm{A}\rightarrow{A}\:\mathrm{satisfying}\:\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)={x}\:\forall{x}\in\mathrm{A},\:\mathrm{is}\:? \\ $$
Commented by rahul 19 last updated on 30/Apr/18
Ans. is 13....
$${Ans}.\:{is}\:\mathrm{13}…. \\ $$
Commented by rahul 19 last updated on 30/Apr/18
does this gives 13?
$${does}\:{this}\:{gives}\:\mathrm{13}? \\ $$
Commented by Rasheed.Sindhi last updated on 30/Apr/18
For example:        {(1,2),(2,1),(3,4),(4,3)}  f(1)=2, f( f(1) )=f(2)=1  f( f(2) )=f(1)=2          a,b,c,d∈A , a,b,c,d are different         {(a,a),(b,b),(c,c),(d,d)}         {(a,a),(b,b),(c,d),(d,c)}        {(a,b),(b,a),(c,d),(d,c)}    Continue
$$\mathrm{For}\:\mathrm{example}: \\ $$$$\:\:\:\:\:\:\left\{\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{2},\mathrm{1}\right),\left(\mathrm{3},\mathrm{4}\right),\left(\mathrm{4},\mathrm{3}\right)\right\} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2},\:\mathrm{f}\left(\:\mathrm{f}\left(\mathrm{1}\right)\:\right)=\mathrm{f}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$$\mathrm{f}\left(\:\mathrm{f}\left(\mathrm{2}\right)\:\right)=\mathrm{f}\left(\mathrm{1}\right)=\mathrm{2} \\ $$$$ \\ $$$$\:\:\:\:\:\:{a},{b},{c},{d}\in\mathrm{A}\:,\:{a},{b},{c},{d}\:\mathrm{are}\:\mathrm{different} \\ $$$$\:\:\:\:\:\:\:\left\{\left({a},{a}\right),\left({b},{b}\right),\left({c},{c}\right),\left({d},{d}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\left\{\left({a},{a}\right),\left({b},{b}\right),\left({c},{d}\right),\left({d},{c}\right)\right\} \\ $$$$\:\:\:\:\:\:\left\{\left({a},{b}\right),\left({b},{a}\right),\left({c},{d}\right),\left({d},{c}\right)\right\} \\ $$$$ \\ $$$$\mathrm{Continue} \\ $$
Answered by Rasheed.Sindhi last updated on 30/Apr/18
Domain(f)=A, the function have 4 orderd  pairs, the pair of f is either of (a,a) type  or if it is (a,b) with a≠b then the f also  contains (b,a) because of the condition  f(f(x))=x ∀x∈A.         The ordered pair containing 1 as abscissa  may be (1,1),(1,2),(1,3),(1,4)   (1,1):(2,2),(2,3),(2,4) [(2,1) is impossible  −−−−−−    (1,1),(2,2),(3,3),(4,4)    (1,1),(2,2),(3,4),(4,3)    (1,1),(2,3),(3,2),(4,4)    (1,1),(2,4),(3,3),(4,2)  −−−−−    (1,2),(2,1),(3,4),(4,3)    (1,2),(2,1),(3,3),(4,4)    (1,3),(2,4),(3,1),(4,2)    (1,3),(2,2),(3,1),(4,4)    (1,4)(2,3)(3,2),(4,1)    (1,4)(2,2)(3,3),(4,1)
$$\mathrm{Domain}\left(\mathrm{f}\right)=\mathrm{A},\:\mathrm{the}\:\mathrm{function}\:\mathrm{have}\:\mathrm{4}\:\mathrm{orderd} \\ $$$$\mathrm{pairs},\:\mathrm{the}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{f}\:\mathrm{is}\:\mathrm{either}\:\mathrm{of}\:\left({a},{a}\right)\:\mathrm{type} \\ $$$$\mathrm{or}\:\mathrm{if}\:\mathrm{it}\:\mathrm{is}\:\left({a},{b}\right)\:\mathrm{with}\:{a}\neq\mathrm{b}\:\mathrm{then}\:\mathrm{the}\:\mathrm{f}\:\mathrm{also} \\ $$$$\mathrm{contains}\:\left({b},{a}\right)\:\mathrm{because}\:\mathrm{of}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{f}\left(\mathrm{f}\left({x}\right)\right)={x}\:\forall{x}\in\mathrm{A}. \\ $$$$\:\:\:\:\:\:\:\mathrm{The}\:\mathrm{ordered}\:\mathrm{pair}\:\mathrm{containing}\:\mathrm{1}\:\mathrm{as}\:\mathrm{abscissa} \\ $$$$\mathrm{may}\:\mathrm{be}\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{1},\mathrm{3}\right),\left(\mathrm{1},\mathrm{4}\right) \\ $$$$\:\left(\mathrm{1},\mathrm{1}\right):\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{2},\mathrm{4}\right)\:\left[\left(\mathrm{2},\mathrm{1}\right)\:\mathrm{is}\:\mathrm{impossible}\right. \\ $$$$−−−−−− \\ $$$$\:\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{4}\right),\left(\mathrm{4},\mathrm{3}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right),\left(\mathrm{4},\mathrm{4}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{2}\right) \\ $$$$−−−−− \\ $$$$\:\:\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{2},\mathrm{1}\right),\left(\mathrm{3},\mathrm{4}\right),\left(\mathrm{4},\mathrm{3}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{2},\mathrm{1}\right),\left(\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{3}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{3},\mathrm{1}\right),\left(\mathrm{4},\mathrm{2}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{3}\right),\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{1}\right),\left(\mathrm{4},\mathrm{4}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{4}\right)\left(\mathrm{2},\mathrm{3}\right)\left(\mathrm{3},\mathrm{2}\right),\left(\mathrm{4},\mathrm{1}\right) \\ $$$$\:\:\left(\mathrm{1},\mathrm{4}\right)\left(\mathrm{2},\mathrm{2}\right)\left(\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{1}\right) \\ $$$$\: \\ $$
Commented by Rasheed.Sindhi last updated on 30/Apr/18
I think the answer should be 10.
$$\mathrm{I}\:\mathrm{think}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{10}. \\ $$
Commented by rahul 19 last updated on 30/Apr/18
Thank You Sir !
$$\mathscr{T}{hank}\:\mathscr{Y}{ou}\:\mathscr{S}{ir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *