Menu Close

Let-A-1-2-3-n-if-a-i-is-the-minimum-element-of-the-set-A-where-A-denotes-the-subset-of-A-containing-exactly-three-elements-and-X-denotes-the-set-of-A-i-s-then-evaluate-A-i-X-




Question Number 22044 by Tinkutara last updated on 10/Oct/17
Let A = {1, 2, 3, ....., n}, if a_i  is the  minimum element of the set A; (where  A; denotes the subset of A containing  exactly three elements) and X denotes  the set of A_i ′s, then evaluate Σ_(A_i ∈X) a.
LetA={1,2,3,..,n},ifaiistheminimumelementofthesetA;(whereA;denotesthesubsetofAcontainingexactlythreeelements)andXdenotesthesetofAis,thenevaluateAiXa.
Answered by revenge last updated on 17/Oct/17
Required sum=1∙^(n−1) C_2 +2∙^(n−2) C_2 +3∙^(n−3) C_2 +...+(n−2)∙^2 C_2   It is equal to the coefficient of x^2  in the expansion of  (1+x)^(n−1) +2(1+x)^(n−2) +3(1+x)^(n−3) +...+(n−2)(1+x)^2   S=(1+x)^(n−1) +2(1+x)^(n−2) +3(1+x)^(n−3) +...+(n−2)(1+x)^2   (S/(1+x))=                    (1+x)^(n−2) +2(1+x)^(n−3) +...+(n−3)(1+x)^2 +(n−2)(1+x)  S−(S/(1+x))=(1+x)^(n−1) +(1+x)^(n−2) +(1+x)^(n−3) +...+(1+x)^2 −(n−2)(1+x)  ((Sx)/(1+x))=(((1+x)^2 [(1+x)^(n−2) −1])/x)−(n−2)(1+x)  S=(((1+x)^3 [(1+x)^(n−2) −1])/x^2 )−(((n−2)(1+x)^2 )/x)  S=(((1+x)^(n+1) )/x^2 )−(((1+x)^3 )/x^2 )−(n−2)((1+2x+x^2 )/x)  x^2  term can be only obtained from (((1+x)^(n+1) )/x^2 ). So we require  x^4  in (1+x)^(n+1) , which has the coefficient^(n+1) C_4 .
Requiredsum=1n1C2+2n2C2+3n3C2++(n2)2C2Itisequaltothecoefficientofx2intheexpansionof(1+x)n1+2(1+x)n2+3(1+x)n3++(n2)(1+x)2S=(1+x)n1+2(1+x)n2+3(1+x)n3++(n2)(1+x)2S1+x=(1+x)n2+2(1+x)n3++(n3)(1+x)2+(n2)(1+x)SS1+x=(1+x)n1+(1+x)n2+(1+x)n3++(1+x)2(n2)(1+x)Sx1+x=(1+x)2[(1+x)n21]x(n2)(1+x)S=(1+x)3[(1+x)n21]x2(n2)(1+x)2xS=(1+x)n+1x2(1+x)3x2(n2)1+2x+x2xx2termcanbeonlyobtainedfrom(1+x)n+1x2.Sowerequirex4in(1+x)n+1,whichhasthecoefficientn+1C4.
Commented by Tinkutara last updated on 17/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *