Question Number 55274 by maxmathsup by imad last updated on 20/Feb/19

Commented by maxmathsup by imad last updated on 24/Feb/19
![1) changement (a/x) =t give x =(a/t) ⇒ϕ(a)=∫_a ^(a/( (√3))) arctan(t)(((−a)/t^2 ))dt ⇒ ((ϕ(a))/a)= ∫_(a/( (√3))) ^a ((arctan(t))/t^2 ) dt by parts we get ((ϕ(a))/a) =[−(1/t) arctan(t)]_(a/( (√3))) ^a +∫_(a/( (√3))) ^a (1/(t(1+t^2 )))dt =((√3)/a) arctan((a/( (√3)))) −((arctan(a))/a) +∫_(a/( (√3))) ^a (dt/(t(1+t^2 )))dt but ∫_(a/( (√3))) ^a (dt/(t(1+t^2 )))dt =∫_(a/( (√3))) ^a ((1/t) −(t/(1+t^2 )))dt = [ln((t/( (√(1+t^2 )))))]_(a/( (√3))) ^a =ln((a/( (√(1+a^2 ))))) −ln((a/( (√3)((√(1+(a^2 /3))))))=ln((a/( (√(1+a^2 )))))−ln((a/( (√(a^2 +3))))) =ln(a)−(1/2)ln(1+a^2 )−ln(a)+(1/2)ln(a^2 +3) =(1/2){ln(a^2 +3)−ln(a^2 +1)} ⇒ ((ϕ(a))/a) =((√3)/a) arctan((a/( (√3))))−((arctan(a))/a) +ln((√((a^2 +3)/(a^2 +1)))) ⇒ ϕ(a) =(√3)arctan((a/( (√3))))−arctan(a) +aln((√((a^2 +3)/(a^2 +1)))) .](https://www.tinkutara.com/question/Q55445.png)
Commented by maxmathsup by imad last updated on 24/Feb/19

Commented by maxmathsup by imad last updated on 24/Feb/19

Commented by maxmathsup by imad last updated on 24/Feb/19
