Menu Close

let-a-1-3-arctan-a-x-dx-1-calculate-a-interms-of-a-2-calculate-a-at-form-of-integral-3-determine-n-a-at-form-of-integral-4-find-the-value-of-1-3-arctan-2




Question Number 55274 by maxmathsup by imad last updated on 20/Feb/19
let ϕ(a) =∫_1 ^(√3)   arctan((a/x))dx  1) calculate ϕ(a) interms of a  2)  calculate ϕ^′ (a) at form of integral.  3) determine ϕ^((n)) (a)  at form of integral.  4) find the value of ∫_1 ^(√3)  arctan((2/x))dx .
letφ(a)=13arctan(ax)dx1)calculateφ(a)intermsofa2)calculateφ(a)atformofintegral.3)determineφ(n)(a)atformofintegral.4)findthevalueof13arctan(2x)dx.
Commented by maxmathsup by imad last updated on 24/Feb/19
1) changement (a/x) =t give x =(a/t) ⇒ϕ(a)=∫_a ^(a/( (√3)))    arctan(t)(((−a)/t^2 ))dt ⇒  ((ϕ(a))/a)= ∫_(a/( (√3))) ^a      ((arctan(t))/t^2 ) dt  by parts we get ((ϕ(a))/a) =[−(1/t) arctan(t)]_(a/( (√3))) ^a  +∫_(a/( (√3))) ^a  (1/(t(1+t^2 )))dt  =((√3)/a) arctan((a/( (√3)))) −((arctan(a))/a) +∫_(a/( (√3))) ^a    (dt/(t(1+t^2 )))dt but  ∫_(a/( (√3))) ^a   (dt/(t(1+t^2 )))dt =∫_(a/( (√3))) ^a  ((1/t) −(t/(1+t^2 )))dt = [ln((t/( (√(1+t^2 )))))]_(a/( (√3))) ^a =ln((a/( (√(1+a^2 )))))  −ln((a/( (√3)((√(1+(a^2 /3))))))=ln((a/( (√(1+a^2 )))))−ln((a/( (√(a^2 +3)))))  =ln(a)−(1/2)ln(1+a^2 )−ln(a)+(1/2)ln(a^2  +3) =(1/2){ln(a^2 +3)−ln(a^2  +1)} ⇒  ((ϕ(a))/a) =((√3)/a) arctan((a/( (√3))))−((arctan(a))/a) +ln((√((a^2 +3)/(a^2 +1))))  ⇒  ϕ(a) =(√3)arctan((a/( (√3))))−arctan(a) +aln((√((a^2  +3)/(a^2  +1)))) .
1)changementax=tgivex=atφ(a)=aa3arctan(t)(at2)dtφ(a)a=a3aarctan(t)t2dtbypartswegetφ(a)a=[1tarctan(t)]a3a+a3a1t(1+t2)dt=3aarctan(a3)arctan(a)a+a3adtt(1+t2)dtbuta3adtt(1+t2)dt=a3a(1tt1+t2)dt=[ln(t1+t2)]a3a=ln(a1+a2)ln(a3(1+a23)=ln(a1+a2)ln(aa2+3)=ln(a)12ln(1+a2)ln(a)+12ln(a2+3)=12{ln(a2+3)ln(a2+1)}φ(a)a=3aarctan(a3)arctan(a)a+ln(a2+3a2+1)φ(a)=3arctan(a3)arctan(a)+aln(a2+3a2+1).
Commented by maxmathsup by imad last updated on 24/Feb/19
2) we have ϕ^′ (a) =∫_1 ^(√3) (1/(x(1+(a^2 /x^2 )))) dx = ∫_1 ^(√3)    (x/(x^2  +a^2 )) dx .
2)wehaveφ(a)=131x(1+a2x2)dx=13xx2+a2dx.
Commented by maxmathsup by imad last updated on 24/Feb/19
4) we have ϕ(a) =∫_1 ^(√3)   arctan((a/x))dx ⇒  ∫_1 ^(√3)   arctan((2/x))dx =ϕ(2) =(√3)arctan((2/( (√3))))−arctan(2) +2 ln((√(7/5)))  =(√3)arctan((2/( (√3))))−arctan(2) +ln(7)−ln(5) .
4)wehaveφ(a)=13arctan(ax)dx13arctan(2x)dx=φ(2)=3arctan(23)arctan(2)+2ln(75)=3arctan(23)arctan(2)+ln(7)ln(5).
Commented by maxmathsup by imad last updated on 24/Feb/19
3) we have ϕ^((1)) (a) =∫_1 ^(√3)   (x/(x^2  +a^2 ))dx ⇒ϕ^((n)) (a) =∫_1 ^(√3) (d^(n−1) /da^(n−1) )  ((x/(x^2  +a^2 ))) dx  let  =∫_1 ^(√3)   x {(1/(x^2  +a^2 ))}_(/a) ^((n−1))   dx =∫_1 ^(√3)  (1/(2i)) {(1/(a−ix)) −(1/(a+ix))}_(/a) ^((n−1)) dx  =(1/(2i)) ∫_1 ^(√3)    {  (((−1)^(n−1) (n−1)!)/((a−ix)^n )) −(((−1)^(n−1) (n−1)!)/((a+ix)^n ))}dx  =(((−1)^(n−1) (n−1)!)/(2i)) ∫_1 ^(√3)   (((a+ix)^n −(a−ix)^n )/((a^2  +x^2 )^n )) dx  =(−1)^(n−1) (n−1)! ∫_1 ^(√3)    ((Im((a+ix)^n ))/((a^2  +x^2 )^n )) dx .
3)wehaveφ(1)(a)=13xx2+a2dxφ(n)(a)=13dn1dan1(xx2+a2)dxlet=13x{1x2+a2}/a(n1)dx=1312i{1aix1a+ix}/a(n1)dx=12i13{(1)n1(n1)!(aix)n(1)n1(n1)!(a+ix)n}dx=(1)n1(n1)!2i13(a+ix)n(aix)n(a2+x2)ndx=(1)n1(n1)!13Im((a+ix)n)(a2+x2)ndx.

Leave a Reply

Your email address will not be published. Required fields are marked *