Menu Close

Let-a-1-a-2-a-3-a-2022-be-numbers-ranging-from-0-1-for-which-the-function-f-R-R-is-defined-as-f-x-a-1-x-a-2-x-a-3-x-a-2022-x-If-f-2022-f-2022-2022-prove-that




Question Number 181196 by depressiveshrek last updated on 22/Nov/22
Let a_1 , a_2 , a_3 , ...a_(2022)  be numbers  ranging from (0, +∞) \ {1}, for which  the function f : R→R is defined as  f(x)=a_1 ^x +a_2 ^x +a_3 ^x +...a_(2022) ^x .  If f(2022)=f(−2022)=2022 prove  that this function is constant.
$${Let}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,\:…{a}_{\mathrm{2022}} \:{be}\:{numbers} \\ $$$${ranging}\:{from}\:\left(\mathrm{0},\:+\infty\right)\:\backslash\:\left\{\mathrm{1}\right\},\:{for}\:{which} \\ $$$${the}\:{function}\:{f}\::\:\mathbb{R}\rightarrow\mathbb{R}\:{is}\:{defined}\:{as} \\ $$$${f}\left({x}\right)={a}_{\mathrm{1}} ^{{x}} +{a}_{\mathrm{2}} ^{{x}} +{a}_{\mathrm{3}} ^{{x}} +…{a}_{\mathrm{2022}} ^{{x}} . \\ $$$${If}\:{f}\left(\mathrm{2022}\right)={f}\left(−\mathrm{2022}\right)=\mathrm{2022}\:{prove} \\ $$$${that}\:{this}\:{function}\:{is}\:{constant}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *