Menu Close

Let-a-1-a-2-a-3-a-n-be-real-numbers-such-that-a-1-a-2-1-a-3-2-a-n-n-1-1-2-a-1-a-2-a-3-a-n-n-n-3-4-Then-find-the-value-of-i-1-10




Question Number 192277 by York12 last updated on 13/May/23
  Let a_1 , a_2 , a_3 ,..., a_n  be real numbers such that:  (√a_1 ) + (√(a_2 −1  )) +(√(a_3 −2 )) +...+(√(a_n −(n−1) ))=(1/2)(a_1 +a_2 +a_3 +...+a_n )−((n(n−3))/4)  Then find the value of [ Σ_(i=1) ^(100) (a_i )].
$$ \\ $$$${Let}\:{a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,…,\:{a}_{{n}} \:{be}\:{real}\:{numbers}\:{such}\:{that}: \\ $$$$\sqrt{{a}_{\mathrm{1}} }\:+\:\sqrt{{a}_{\mathrm{2}} −\mathrm{1}\:\:}\:+\sqrt{{a}_{\mathrm{3}} −\mathrm{2}\:}\:+…+\sqrt{{a}_{{n}} −\left({n}−\mathrm{1}\right)\:}=\frac{\mathrm{1}}{\mathrm{2}}\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +…+{a}_{{n}} \right)−\frac{{n}\left({n}−\mathrm{3}\right)}{\mathrm{4}} \\ $$$$\boldsymbol{{Then}}\:\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\left[\:\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left(\boldsymbol{{a}}_{\boldsymbol{{i}}} \right)\right]. \\ $$
Answered by witcher3 last updated on 14/May/23
(√a)≤(1/2)(a)+(1/2),∀a≥0  ⇒Σ_(k=1) ^n (√(a_k −(k−1)))≤Σ_(k=1) ^n (1/2)(a_k −k+2)=(1/2)(a_1 +....+a_n )−(1/2)(((n(n+1))/2)−((4n)/2))  ⇒≤(1/2)(a_1 +....+a_n )−((n(n−3))/4)  withe Equality ⇔  it (√(a_k −(k−1)))=1⇒a_k =k,∀k∈{1.....n}  ⇒Σ_(k=1) ^(100) a_k =50(101)=5050
$$\sqrt{\mathrm{a}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}\right)+\frac{\mathrm{1}}{\mathrm{2}},\forall\mathrm{a}\geqslant\mathrm{0} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{a}_{\mathrm{k}} −\left(\mathrm{k}−\mathrm{1}\right)}\leqslant\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}_{\mathrm{k}} −\mathrm{k}+\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}_{\mathrm{1}} +….+\mathrm{a}_{\mathrm{n}} \right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}−\frac{\mathrm{4n}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\leqslant\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}_{\mathrm{1}} +….+\mathrm{a}_{\mathrm{n}} \right)−\frac{\mathrm{n}\left(\mathrm{n}−\mathrm{3}\right)}{\mathrm{4}} \\ $$$$\mathrm{withe}\:\mathrm{Equality}\:\Leftrightarrow \\ $$$$\mathrm{it}\:\sqrt{\mathrm{a}_{\mathrm{k}} −\left(\mathrm{k}−\mathrm{1}\right)}=\mathrm{1}\Rightarrow\mathrm{a}_{\mathrm{k}} =\mathrm{k},\forall\mathrm{k}\in\left\{\mathrm{1}…..\mathrm{n}\right\} \\ $$$$\Rightarrow\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\mathrm{a}_{\mathrm{k}} =\mathrm{50}\left(\mathrm{101}\right)=\mathrm{5050} \\ $$$$ \\ $$$$ \\ $$
Commented by York12 last updated on 14/May/23
  let b_i =(√(a_(i  ) −(i−1) )) → a_i =(b_i )^2 +i−1  ∴Σ_(j=1 ) ^n [b_(i ) ]= (1/2)(a_1 +a_2 +a_3 +...+a_n _(Σ_(i=1) ^n [a_(i ) ])  )−((n(n−3))/4)  =(1/2)(Σ_(i=1) ^n [(b_i )^2 ]+Σ_(i=1) ^n [i]−Σ_(i=1) ^n (1))−((n(n−3))/4)  =(1/2) Σ_(i=1) ^n [(b_i )^2 ]+(n/2)  ∴ 2Σ_(i=1) ^n (b_i )=Σ_(i=1) ^n [(b_i )^2 ]+n → Σ_(i=1) ^n [(b_(i  ) )^2 −2b_i +1]=0  ∴ [b_i −1]^2 =0 →  b_i =1  ∴ a_i =i → Σ_(i=1) ^(100) (a_i )=Σ_(i=1) ^(100) (i)=((100×101)/2)=5050  (That′s it)                                           {By York.W}
$$ \\ $$$${let}\:{b}_{{i}} =\sqrt{{a}_{{i}\:\:} −\left({i}−\mathrm{1}\right)\:}\:\rightarrow\:{a}_{{i}} =\left({b}_{{i}} \right)^{\mathrm{2}} +{i}−\mathrm{1} \\ $$$$\therefore\underset{{j}=\mathrm{1}\:} {\overset{{n}} {\sum}}\left[{b}_{{i}\:} \right]=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{a}_{{i}\:} \right]} {\underbrace{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +…+{a}_{{n}} }}\:\right)−\frac{{n}\left({n}−\mathrm{3}\right)}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({b}_{{i}} \right)^{\mathrm{2}} \right]+\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[{i}\right]−\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{1}\right)\right)−\frac{{n}\left({n}−\mathrm{3}\right)}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({b}_{{i}} \right)^{\mathrm{2}} \right]+\frac{{n}}{\mathrm{2}} \\ $$$$\therefore\:\mathrm{2}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({b}_{{i}} \right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({b}_{{i}} \right)^{\mathrm{2}} \right]+{n}\:\rightarrow\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({b}_{{i}\:\:} \right)^{\mathrm{2}} −\mathrm{2}{b}_{{i}} +\mathrm{1}\right]=\mathrm{0} \\ $$$$\therefore\:\left[{b}_{{i}} −\mathrm{1}\right]^{\mathrm{2}} =\mathrm{0}\:\rightarrow\:\:{b}_{{i}} =\mathrm{1} \\ $$$$\therefore\:{a}_{{i}} ={i}\:\rightarrow\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left({a}_{{i}} \right)=\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\left({i}\right)=\frac{\mathrm{100}×\mathrm{101}}{\mathrm{2}}=\mathrm{5050}\:\:\left({That}'{s}\:{it}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{\mathscr{B}{y}\:{York}.{W}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *