Menu Close

Let-a-1-a-2-a-3-a-n-be-real-numbers-such-that-a-1-a-2-1-a-3-2-a-n-n-1-1-2-a-1-a-2-a-3-a-n-n-n-3-4-Then-find-the-value-of-i-1-10




Question Number 192277 by York12 last updated on 13/May/23
  Let a_1 , a_2 , a_3 ,..., a_n  be real numbers such that:  (√a_1 ) + (√(a_2 −1  )) +(√(a_3 −2 )) +...+(√(a_n −(n−1) ))=(1/2)(a_1 +a_2 +a_3 +...+a_n )−((n(n−3))/4)  Then find the value of [ Σ_(i=1) ^(100) (a_i )].
Leta1,a2,a3,,anberealnumberssuchthat:a1+a21+a32++an(n1)=12(a1+a2+a3++an)n(n3)4Thenfindthevalueof[100i=1(ai)].
Answered by witcher3 last updated on 14/May/23
(√a)≤(1/2)(a)+(1/2),∀a≥0  ⇒Σ_(k=1) ^n (√(a_k −(k−1)))≤Σ_(k=1) ^n (1/2)(a_k −k+2)=(1/2)(a_1 +....+a_n )−(1/2)(((n(n+1))/2)−((4n)/2))  ⇒≤(1/2)(a_1 +....+a_n )−((n(n−3))/4)  withe Equality ⇔  it (√(a_k −(k−1)))=1⇒a_k =k,∀k∈{1.....n}  ⇒Σ_(k=1) ^(100) a_k =50(101)=5050
a12(a)+12,a0nk=1ak(k1)nk=112(akk+2)=12(a1+.+an)12(n(n+1)24n2)⇒⩽12(a1+.+an)n(n3)4witheEqualityitak(k1)=1ak=k,k{1..n}100k=1ak=50(101)=5050
Commented by York12 last updated on 14/May/23
  let b_i =(√(a_(i  ) −(i−1) )) → a_i =(b_i )^2 +i−1  ∴Σ_(j=1 ) ^n [b_(i ) ]= (1/2)(a_1 +a_2 +a_3 +...+a_n _(Σ_(i=1) ^n [a_(i ) ])  )−((n(n−3))/4)  =(1/2)(Σ_(i=1) ^n [(b_i )^2 ]+Σ_(i=1) ^n [i]−Σ_(i=1) ^n (1))−((n(n−3))/4)  =(1/2) Σ_(i=1) ^n [(b_i )^2 ]+(n/2)  ∴ 2Σ_(i=1) ^n (b_i )=Σ_(i=1) ^n [(b_i )^2 ]+n → Σ_(i=1) ^n [(b_(i  ) )^2 −2b_i +1]=0  ∴ [b_i −1]^2 =0 →  b_i =1  ∴ a_i =i → Σ_(i=1) ^(100) (a_i )=Σ_(i=1) ^(100) (i)=((100×101)/2)=5050  (That′s it)                                           {By York.W}
letbi=ai(i1)ai=(bi)2+i1nj=1[bi]=12(a1+a2+a3++anni=1[ai])n(n3)4=12(ni=1[(bi)2]+ni=1[i]ni=1(1))n(n3)4=12ni=1[(bi)2]+n22ni=1(bi)=ni=1[(bi)2]+nni=1[(bi)22bi+1]=0[bi1]2=0bi=1ai=i100i=1(ai)=100i=1(i)=100×1012=5050(Thatsit){ByYork.W}

Leave a Reply

Your email address will not be published. Required fields are marked *