Menu Close

let-a-1-a-2-a-n-be-positive-real-numbers-such-that-a-1-a-2-a-n-1-then-find-maximum-value-of-a-1-a-1-a-2-a-2-a-n-a-n-




Question Number 145073 by gsk2684 last updated on 02/Jul/21
let a_1 ,a_2 ,...,a_n  be positive  real numbers such that   a_1 +a_2 +...+a_n =1 then find   maximum value of   a_1 ^a_1  .a_2 ^a_2  ....a_n ^a_n   ?
$$\mathrm{let}\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,…,\mathrm{a}_{\mathrm{n}} \:\mathrm{be}\:\mathrm{positive} \\ $$$$\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} +…+\mathrm{a}_{\mathrm{n}} =\mathrm{1}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{a}_{\mathrm{1}} ^{\mathrm{a}_{\mathrm{1}} } .\mathrm{a}_{\mathrm{2}} ^{\mathrm{a}_{\mathrm{2}} } ….\mathrm{a}_{\mathrm{n}} ^{\mathrm{a}_{\mathrm{n}} } \:? \\ $$
Commented by shuvam last updated on 02/Jul/21
are you teacher?
$${are}\:{you}\:{teacher}? \\ $$
Commented by gsk2684 last updated on 02/Jul/21
yes
$$\mathrm{yes} \\ $$
Answered by MJS_new last updated on 02/Jul/21
lim_(r→0)  r^r  =1  ⇒ let a_1 →1∧a_2 =a_3 =...=a_n →0 ⇒  (1/( n))≤a_1 ^a_1  a_2 ^a_2  ...a_n ^a_n  <1
$$\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{r}^{{r}} \:=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{let}\:{a}_{\mathrm{1}} \rightarrow\mathrm{1}\wedge{a}_{\mathrm{2}} ={a}_{\mathrm{3}} =…={a}_{{n}} \rightarrow\mathrm{0}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\:{n}}\leqslant{a}_{\mathrm{1}} ^{{a}_{\mathrm{1}} } {a}_{\mathrm{2}} ^{{a}_{\mathrm{2}} } …{a}_{{n}} ^{{a}_{{n}} } <\mathrm{1} \\ $$
Commented by gsk2684 last updated on 02/Jul/21
thank you   hou could you write minimum as (1/n)  kindly explain sir
$$\mathrm{thank}\:\mathrm{you}\: \\ $$$$\mathrm{hou}\:\mathrm{could}\:\mathrm{you}\:\mathrm{write}\:\mathrm{minimum}\:\mathrm{as}\:\frac{\mathrm{1}}{\mathrm{n}} \\ $$$$\mathrm{kindly}\:\mathrm{explain}\:\mathrm{sir} \\ $$
Commented by MJS_new last updated on 02/Jul/21
minimum at a_1 =a_2 =...=a_n =(1/n)  ⇒  a_k ^a_k  =((1/n))^(1/n) =(1/( (n)^(1/n) ))  Π_(k=1) ^n (1/( (n)^(1/n) )) =((1/( (n)^(1/n) )))^n =(1/n)
$$\mathrm{minimum}\:\mathrm{at}\:{a}_{\mathrm{1}} ={a}_{\mathrm{2}} =…={a}_{{n}} =\frac{\mathrm{1}}{{n}} \\ $$$$\Rightarrow \\ $$$${a}_{{k}} ^{{a}_{{k}} } =\left(\frac{\mathrm{1}}{{n}}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{n}}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{n}}}\:=\left(\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{n}}}\right)^{{n}} =\frac{\mathrm{1}}{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *