Menu Close

let-A-2-1-1-2-1-calculate-A-n-2-determine-cosA-and-sinA-3-find-chA-and-shA-




Question Number 99828 by mathmax by abdo last updated on 23/Jun/20
let A = (((2            1)),((1      2)) )  1) calculate A^n   2)determine cosA and sinA  3) find chA and shA
letA=(2112)1)calculateAn2)determinecosAandsinA3)findchAandshA
Commented by bachamohamed last updated on 23/Jun/20
    1)    A= (((2   1)),((1    2)) )    p_A (𝛌)=det(A−𝛌I_2 )=(𝛌−1)(𝛌−2)   donc  les valeurs propres sont  {_(𝛌_2 =2) ^(𝛌_1 =1)   E_𝛌_1  =<(−1.1)>      E_𝛌_2  =<(1.1)>    ou   les vecteurs propres sont {_(v_2 =(1.1)) ^(v_1 =(−1.1))   et  donc  ∃ p ∈M_(2x2) (R)    telle que  B=p^(−1) A.p  on a  id_E   (R^2 .(v_1 .v_2 ))→^(p  matrix de id_E ) (R^2 .(e_1 .e_2 ))   en deduire que  p= (((−1     1)),((  1      1)) )    et   p^(−1) = (((−(1/2)      (1/2))),((     (1/2)      (1/2))) )     B=p^(−1) Ap = (((1  0)),((0   3)) )    et B^n =(p^(−1) Ap)^n =(p^(−1) Ap)(p^(−1) Ap)......^(n fois) ......(p^(−1) Ap)=p^(−1) A^n .p     ⇒  A^n =p.B^n .p^(−1)                                                                 ⇒A^n =(1/2) ((((3^n +1)       3^n −1)),((3^n −1          3^n +1)) )
1)A=(2112)pA(λ)=det(AλI2)=(λ1)(λ2)donclesvaleurspropressont{λ2=2λ1=1Eλ1=<(1.1)>Eλ2=<(1.1)>oulesvecteurspropressont{v2=(1.1)v1=(1.1)etdoncpM2×2(R)tellequeB=p1A.ponaidE(R2.(v1.v2))pmatrixdeidE(R2.(e1.e2))endeduirequep=(1111)etp1=(12121212)B=p1Ap=(1003)etBn=(p1Ap)n=(p1Ap)(p1Ap)...nfois(p1Ap)=p1An.pAn=p.Bn.p1An=12((3n+1)3n13n13n+1)
Commented by mathmax by abdo last updated on 23/Jun/20
thankx sir.
thankxsir.
Answered by mathmax by abdo last updated on 23/Jun/20
1) the caracteristic polynome is P_c (A) =det(A−xI)= determinant (((2−x        1)),((1          2−x)))  =(2−x)^2 −1 =(x−2)^2 −1 =(x−2−1)(x−2+1) =(x−3)(x−1) ⇒  ⇒λ_1 =1 and λ_2 =3   we have x^(n )  =p_c (x)q +u_n x+v_n  ⇒  1 =u_n  +v_n  and 3^n  =3u_n  +v_n  ⇒2u_n =3^n −1 ⇒u_n =((3^n −1)/2)  v_n =1−u_n =1−((3^n −1)/2) =((2−3^n +1)/2) =((3−3^n )/2)  we have A^n  =u_n  A +v_n I=((3^n −1)/2)  (((2              1)),((1               2)) )  +((3−3^n )/2) (((1         0)),((0           1)) )  = (((3^n −1              ((3^n −1)/2))),((((3^n −1)/2)             3^n −1)) ) + (((((3−3^n )/2)            0)),((0               ((3−3^n )/2))) )  = (((((2.3^n −2+3−3^n )/2)             ((3^n −1)/2))),((((3^n −1)/2)                         ((2.3^n −2+3−3^n )/2))) )  = (((((3^n  +1)/2)               ((3^n −1)/2))),((((3^n −1)/2)              ((3^n +1)/2))) )
1)thecaracteristicpolynomeisPc(A)=det(AxI)=|2x112x|=(2x)21=(x2)21=(x21)(x2+1)=(x3)(x1)λ1=1andλ2=3wehavexn=pc(x)q+unx+vn1=un+vnand3n=3un+vn2un=3n1un=3n12vn=1un=13n12=23n+12=33n2wehaveAn=unA+vnI=3n12(2112)+33n2(1001)=(3n13n123n123n1)+(33n20033n2)=(2.3n2+33n23n123n122.3n2+33n2)=(3n+123n123n123n+12)
Commented by mathmax by abdo last updated on 24/Jun/20
2) cos A =Σ_(n=0) ^∞  (((−1)^n  A^(2n) )/((2n)!)) =Σ_(n=0) ^∞  (((−1)^n )/(2(2n)!))  (((3^(2n)  +1              3^(2n) −1)),((3^(2n) −1               3^(2n) +1)) )  =(1/2)  (((Σ_(n=0) ^∞  (((−1)^n )/((2n)!))3^(2n)  +Σ_(n=0) ^∞ (((−1)^n )/((2n)!))             Σ_(n=0) ^∞  (((−1)^n  3^(2n) )/((2n)!))−Σ_(n=0) ^∞  (((−1)^n )/((2n)!)))),((.....                                                                                               ....)) )  =(1/2) (((cos(3)+cos(1)             cos3−cos(1))),((cos(3)−cos(1)             cos(3)+cos(1))) )  sinA =Σ_(n=0) ^∞  (((−1)^n  A^(2n+1) )/((2n+1)!))  =.....
2)cosA=n=0(1)nA2n(2n)!=n=0(1)n2(2n)!(32n+132n132n132n+1)=12(n=0(1)n(2n)!32n+n=0(1)n(2n)!n=0(1)n32n(2n)!n=0(1)n(2n)!...)=12(cos(3)+cos(1)cos3cos(1)cos(3)cos(1)cos(3)+cos(1))sinA=n=0(1)nA2n+1(2n+1)!=..

Leave a Reply

Your email address will not be published. Required fields are marked *