Menu Close

let-A-2-1-1-3-1-calculate-A-n-2-find-e-A-e-A-3-determine-ch-A-and-sh-A-is-ch-2-A-sh-2-A-1-




Question Number 100994 by mathmax by abdo last updated on 29/Jun/20
let  A = (((2           1)),((1            3)) )  1) calculate A^n   2) find e^A  ,e^(−A)   3)determine ch(A) and sh(A)  is ch^2 A−sh^2 A =1?
letA=(2113)1)calculateAn2)findeA,eA3)determinech(A)andsh(A)isch2Ash2A=1?
Answered by mathmax by abdo last updated on 01/Jul/20
1) the caracteristic polynom of A is p_c (x)=det(A−xI)  = determinant (((2−x           1)),((1            3−x))) =(x−2)(x−3)−1 =x^2 −5x+6−1 =x^2 −5x +5  P_c (x)=0 ⇔x^2 −5x +5 =0 →Δ =25−20 =5 ⇒α=((5+(√5))/2) and β=((5−(√5))/2)  we have x^(n )  =qP_c (x) +u_n x +v_n  ⇒ { ((α^n  =u_n α +v_n )),((β^n  =u_n β +v_n )) :}  ⇒u_n =((α^n −β^n )/(α−β)) =(1/( (√5))){ (((5+(√5))/2))^n −(((5−(√5))/2))^n }  v_n =α^n −αu_n =α^n  −α×((α^n −β^n )/(α−β)) =((α^(n+1) −β α^n −α^(n+1) +αβ^n )/(α−β)) =((αβ^n −βα^n )/(α−β))  =((((5+(√5))/2)(((5−(√5))/2))^n  −((5−(√5))/2)(((5+(√5))/2))^n )/( (√5)))  we have A^n  =u_n A +v_n I (by cayley hamilton) ⇒  A^n  =(1/( (√5))){(((5+(√5))/2))^n −(((5−(√5))/2))^n } (((2          1)),((1           3)) ) +((((5+(√5))/2)(((5−(√5))/2))^n −((5−(√5))/2)(((5+(√5))/2))^n )/( (√5))) (((1      0)),((0       1)) )
1)thecaracteristicpolynomofAispc(x)=det(AxI)=|2x113x|=(x2)(x3)1=x25x+61=x25x+5Pc(x)=0x25x+5=0Δ=2520=5α=5+52andβ=552wehavexn=qPc(x)+unx+vn{αn=unα+vnβn=unβ+vnun=αnβnαβ=15{(5+52)n(552)n}vn=αnαun=αnα×αnβnαβ=αn+1βαnαn+1+αβnαβ=αβnβαnαβ=5+52(552)n552(5+52)n5wehaveAn=unA+vnI(bycayleyhamilton)An=15{(5+52)n(552)n}(2113)+5+52(552)n552(5+52)n5(1001)

Leave a Reply

Your email address will not be published. Required fields are marked *