Menu Close

let-A-2-1-3-1-1-prove-that-A-is-inversible-and-calculste-A-1-2-calculate-A-n-3-find-e-A-and-e-A-4-calculate-cos-A-and-sinA-is-cos-2-A-sin-2-A-




Question Number 99580 by mathmax by abdo last updated on 21/Jun/20
let A = (((2          −1)),((3               1)) )  1) prove that A is inversible and calculste A^(−1)   2) calculate A^n   3) find e^A  and e^(−A)   4) calculate cos A and sinA   is cos^2  A +sin^2  A = I ?
letA=(2131)1)provethatAisinversibleandcalculsteA12)calculateAn3)findeAandeA4)calculatecosAandsinAiscos2A+sin2A=I?
Commented by john santu last updated on 22/Jun/20
(1) det(A) ≠ 0 ⇒A^(−1)  = (1/5)  [((   1        1)),((−3      2)) ]
(1)det(A)0A1=15[1132]
Answered by MWSuSon last updated on 22/Jun/20
1) ∣A∣=2+3=5≠0 ■  2)A^n =PD^n P^(−1)   ∣A−λI∣= determinant (((2−λ),(−1)),(3,(1−λ)))=0  (2−λ)(1−λ)+3=0  λ=(1/2)(3±i(√(11)))  when λ=(1/2)(3+i(√(11)))  let B= ((((1/2)−i((√(11))/2)),(−1)),(3,(−(1/2)−((i(√(11)))/2))) )  BX^→ = ((((1/2)−i((√(11))/2)),(−1)),(3,(−(1/2)−((i(√(11)))/2))) ) [(x_1 ),(x_2 ) ]= [(0),(0) ]  augmented matrix   ((((1/2)−((i(√(11)))/2)),(−1),0),(3,(−(1/2)−((i(√(11)))/2)),0) )= [(x_1 ),(x_2 ) ]  by gaussian elimination  R2→R2−(3/((1/2)−((i(√(11)))/2)))R1 and R1→(2/(1−i(√(11))))  = ((1,(−(2/(1−i(√(11)))))),(0,0) ) [(x_1 ),(x_2 ) ]= [(0),(0) ]  x_1 −((2x_2 )/(1−i(√(11))))=0  x_1 =((2x_2 )/(1−i(√(11))))  X^→ = [(((2ix_2 )/(i+(√(11))))),(x_2 ) ],let x_2 =1  X^→ = [(((2i)/(i+(√(11))))),(1) ]  fellowing same procedure second  eigenvector X^→ = [((−((2i)/( (√(11))−i)))),(1) ]  P= [(((2i)/( (√(11))+i)),(−((2i)/( (√(11))−i)))),(1,1) ]  P^(−1) = [(((3i)/( (√(11)))),((1/2)−(i/(2(√(11)))))),((−((3i)/( (√(11))))),((1/2)+(i/(2(√(11)))))) ]  D=P^(−1) AP  D= [(((1/2)(3+i(√(11)))),0),(0,((1/2)(3−i(√(11))))) ]  Hence A^n = [(((2i)/( (√(11))+i)),((2i)/(i−(√(11))))),(1,1) ] [((((1/2))^n (3+i(√(11)))^n ),0),(0,(((1/2))^n (3−(√(11)))^n )) ] [(((3i)/( (√(11)))),((1/2)−(i/(2(√(11)))))),((−((3i)/( (√(11))))),((1/2)+(i/(2(√(11)))))) ]
1)A∣=2+3=50◼2)An=PDnP1AλI∣=|2λ131λ|=0(2λ)(1λ)+3=0λ=12(3±i11)whenλ=12(3+i11)letB=(12i1121312i112)BX=(12i1121312i112)[x1x2]=[00]augmentedmatrix(12i11210312i1120)=[x1x2]bygaussianeliminationR2R2312i112R1andR121i11=(121i1100)[x1x2]=[00]x12x21i11=0x1=2x21i11X=[2ix2i+11x2],letx2=1X=[2ii+111]fellowingsameproceduresecondeigenvectorX=[2i11i1]P=[2i11+i2i11i11]P1=[3i1112i2113i1112+i211]D=P1APD=[12(3+i11)0012(3i11)]HenceAn=[2i11+i2ii1111][(12)n(3+i11)n00(12)n(311)n][3i1112i2113i1112+i211]
Commented by MWSuSon last updated on 22/Jun/20
you are welcome sir.
Commented by abdomathmax last updated on 22/Jun/20
thanks sir.
thankssir.
Answered by MWSuSon last updated on 22/Jun/20
if A= [(a_(11) ,a_(12) ),(a_(21) ,a_(22) ) ]= [(2,(−1)),(3,1) ]  then e^A = [(e^a_(11)  ,e^a_(12)  ),(e^(a21) ,e^a_(22)  ) ]= [(e^2 ,(1/e)),(e^3 ,e) ]  e^(−A) = [((1/e^2 ),e),((1/e^3 ),(1/e)) ]  4)cosA= [((cos(a_(11) )),(cos(a_(12) ))),((cos(a_(21) )),(cos(a_(22) ))) ]= [((cos2),(cos1)),((cos3),(cos1)) ]  sinA= [((sin2),(−sin1)),((sin3),(sin1)) ].  yes cos^2 A+sin^2 A=I
ifA=[a11a12a21a22]=[2131]theneA=[ea11ea12ea21ea22]=[e21ee3e]eA=[1e2e1e31e]4)cosA=[cos(a11)cos(a12)cos(a21)cos(a22)]=[cos2cos1cos3cos1]sinA=[sin2sin1sin3sin1].yescos2A+sin2A=I
Answered by MWSuSon last updated on 22/Jun/20
e^A =Pe^D P^(−1)   e^(−A) =Pe^(−D) P^(−1)   ⇒e^A = [(((2i)/( (√(11))+i)),((−2i)/( (√(11))−i))),(1,1) ] [(e^((1/2)(3+i(√(11)))) ,0),(0,e^((1/2)(3−i(√(11)))) ) ] [(((3i)/( (√(11)))),((1/2)−(i/(2(√(11)))))),((−((3i)/( (√(11))))),((1/2)+(i/(2(√(11)))))) ]  ⇒e^(−A) = [(((2i)/( (√(11))+i)),((−2i)/( (√(11))−i))),(1,1) ] [(e^(−(1/2)(3+i(√(11)))) ,0),(0,e^(−(1/2)(3−i(√(11)))) ) ] [(((3i)/( (√(11)))),((1/2)−(i/(2(√(11)))))),((−((3i)/( (√(11))))),((1/2)+(i/(2(√(11)))))) ]
eA=PeDP1eA=PeDP1eA=[2i11+i2i11i11][e12(3+i11)00e12(3i11)][3i1112i2113i1112+i211]eA=[2i11+i2i11i11][e12(3+i11)00e12(3i11)][3i1112i2113i1112+i211]
Answered by mathmax by abdo last updated on 22/Jun/20
1) P_c (x) =det (A−xI) = determinant (((2−x          −1)),((3               1−x)))=(2−x)(1−x)+3  =(x−2)(x−1)+3 =x^2 −3x+2+3 =x^2 −3x+5  P_c (A) =0 ⇒A^2 −3A +5I =0 ⇒A^2 −3A =−5I ⇒  (−(1/5))A(A−3I) =I ⇒A is inversible and A^(−1)  =(1/5)(3I−A)  =(3/5)I −(1/5) A = ((((3/5)          0)),((0            (3/5))) ) − ((((2/5)           −(1/5))),(((3/5)                  (1/5))) )= ((((1/5)             (1/5))),((−(3/5)          (2/5))) )
1)Pc(x)=det(AxI)=|2x131x|=(2x)(1x)+3=(x2)(x1)+3=x23x+2+3=x23x+5Pc(A)=0A23A+5I=0A23A=5I(15)A(A3I)=IAisinversibleandA1=15(3IA)=35I15A=(350035)(25153515)=(15153525)
Commented by mathmax by abdo last updated on 22/Jun/20
2) we have P_c (x) =x^2 −3x+5  P_c (x)=0 ⇒x^2 −3x+5 =0  →Δ =9−20 =−11 ⇒λ_1 =((3+i(√(11)))/2)  and λ_2 =((3−i(√(11)))/2)   we divide x^n  by p_c (x) ⇒x^n  =qp_c (x) +u_n x +v_n   ⇒λ_1 ^n  =u_n λ_1  +v_n  and λ_2 ^(n )  =u_n  λ_2  +v_n  ⇒  ((λ_1 ^n −λ_2 ^n )/(λ_1 −λ_2 )) =u_n  ⇒v_n =λ_1 ^n −λ_1 u_n =λ_1 ^n −λ_1 ×((λ_1 ^n  −λ_2 ^n )/(λ_1 −λ_2 ))  =((λ_1 ^(n+1) −λ_2 λ_1 ^n −λ_1 ^(n+1)  +λ_1 λ_2 ^n )/(λ_1 −λ_2 )) =((−5 λ_1 ^(n−1)  +5λ_2 ^(n−1) )/(i(√(11)))) =((−5)/(i(√(11))))(λ_1 ^(n−1)  −λ_2 ^(n−1) )  ∣λ_1 ∣ =(1/2)(2(√5)) =(√5) ⇒λ_1 =(√5)e^(iarctan(((√(11))/3)))  and λ_2 =(√5)e^(−iarctan(((√(11))/3)))  ⇒  u_n =((((√5))^n  {e^(inarctan(((√(11))/3))) −e^(−inarctan(((√(11))/3))) })/(i(√(11)))) =((((√5))^n )/(i(√(11)))){2isin(narctan(((√(11))/3)))}  =((2((√5))^n )/( (√(11)))) sin(narctan(((√(11))/3)))  v_n =((−5)/(i(√(11)))){2i sin(n−1)arctan(((√(11))/3)))}  =((−10)/( (√(11)))) {sin(n−1)arctan(((√(11))/3)))}  A^n  =u_n  A +v_n  I =u_n   (((2         −1)),((3             1)) ) +v_n  (((1         0)),((0          1)) )  = (((2u_n  +v_n           −u_n )),((3u_n                  u_n  +v_n )) )
2)wehavePc(x)=x23x+5Pc(x)=0x23x+5=0Δ=920=11λ1=3+i112andλ2=3i112wedividexnbypc(x)xn=qpc(x)+unx+vnλ1n=unλ1+vnandλ2n=unλ2+vnλ1nλ2nλ1λ2=unvn=λ1nλ1un=λ1nλ1×λ1nλ2nλ1λ2=λ1n+1λ2λ1nλ1n+1+λ1λ2nλ1λ2=5λ1n1+5λ2n1i11=5i11(λ1n1λ2n1)λ1=12(25)=5λ1=5eiarctan(113)andλ2=5eiarctan(113)un=(5)n{einarctan(113)einarctan(113)}i11=(5)ni11{2isin(narctan(113))}=2(5)n11sin(narctan(113))vn=5i11{2isin(n1)arctan(113))}=1011{sin(n1)arctan(113))}An=unA+vnI=un(2131)+vn(1001)=(2un+vnun3unun+vn)

Leave a Reply

Your email address will not be published. Required fields are marked *