Menu Close

Let-A-2-2-and-f-R-R-R-such-as-f-x-y-A-x-y-E-x-E-y-where-A-is-the-caracteristic-function-of-A-Prove-that-f-is-a-density-of-a-probability-P-




Question Number 126039 by snipers237 last updated on 16/Dec/20
Let A=[2;∞[^2   and f ∈(R×R)^R  such as   f(x,y)=((χ_A (x,y))/(E(x)^(E(y)) ))  where χ_A  is the caracteristic function of A   Prove that f is a density of a probability P
LetA=[2;[2andf(R×R)Rsuchasf(x,y)=χA(x,y)E(x)E(y)whereχAisthecaracteristicfunctionofAProvethatfisadensityofaprobabilityP
Answered by mindispower last updated on 18/Dec/20
∫∫_A f(x,y)dxdy=  Σ_(n≥2) .Σ_(m≥2) (1/n^m )=Σ_(n≥2) (1/n^2 ).(1/((1−(1/n))))  =Σ(1/(n(n−1)))=Σ_(n≥2) ((1/(n−1))−(1/n))=lim_(M→∞) Σ_2 ^M ((1/(n−1))−(1/n))  =lim_(M→∞) 1−(1/M)=1  ∫_A fdA=1  f >0   f density of probability
Af(x,y)dxdy=n2.m21nm=n21n2.1(11n)=Σ1n(n1)=n2(1n11n)=limMM2(1n11n)=lim1M1M=1AfdA=1f>0fdensityofprobability

Leave a Reply

Your email address will not be published. Required fields are marked *