Question Number 46850 by maxmathsup by imad last updated on 01/Nov/18
$${let}\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}\:} +{c}^{\mathrm{2}} \:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{d}\theta}{{a}+{bsin}\theta\:+{c}\:{cos}\theta} \\ $$
Commented by maxmathsup by imad last updated on 01/Nov/18
$${residus}\:{method}\:\:{let}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{d}\theta}{{a}+{bsin}\theta\:+{ccos}\theta}\:\:{changement}\:{z}\:={e}^{{i}\theta} \:{give} \\ $$$${I}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{1}}{{a}\:+{b}\frac{{z}−{z}^{−\mathrm{1}} }{\mathrm{2}{i}}+{c}\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}}\:\frac{{dz}}{{iz}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{{dz}}{{iz}\left\{{a}+{b}\frac{{z}−{z}^{−\mathrm{1}} }{\mathrm{2}{i}}+{c}\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}\right\}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}{dz}}{{z}\left\{\mathrm{2}{ia}\:+{b}\left({z}−{z}^{−\mathrm{1}} \right)+{ci}\left({z}+{z}^{−\mathrm{1}} \right)\:\right\}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{dz}}{\mathrm{2}{iaz}\:+{bz}^{\mathrm{2}} −{b}\:+{ciz}^{\mathrm{2}} \:+{ci}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{\mathrm{2}{dz}}{\left({b}+{ci}\right){z}^{\mathrm{2}} \:+\mathrm{2}{iaz}\:+{ci}−{b}} \\ $$$${let}\:\varphi\left({z}\right)\:=\frac{\mathrm{2}}{\left({b}+{ci}\right){z}^{\mathrm{2}} \:+\mathrm{2}{iaz}\:+{ci}−{b}}\:.{poles}\:{of}\:\varphi? \\ $$$$\Delta^{'} \:=\left({ia}\right)^{\mathrm{2}} −\left({b}+{ci}\right)\left({ci}−{b}\right)\:=−{a}^{\mathrm{2}} \:−\left(\left({ci}\right)^{\mathrm{2}} −{b}^{\mathrm{2}} \right) \\ $$$$=−{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \:+{c}^{\mathrm{2}} \:=−\left({a}^{\mathrm{2}} −\left({b}^{\mathrm{2}} \:+{c}^{\mathrm{2}} \right)\right)<\mathrm{0}\:\Rightarrow\:{z}_{\mathrm{1}} =\frac{−{ia}\:+{i}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{b}+{ci}} \\ $$$${z}_{\mathrm{2}} =\frac{−{ia}−{i}\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{{b}+{ci}} \\ $$$$\mid{z}_{\mathrm{1}} \mid−\mathrm{1}\:=\frac{\mid{a}−\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }\mid}{\:\sqrt{{b}^{\mathrm{2}} \:+{c}^{\mathrm{2}} }}\:>\mathrm{1}\:\Rightarrow{z}_{\mathrm{1}} {is}\:{out}\:{of}\:{circle}\:.\:\Rightarrow{Res}\left(\varphi,{z}_{\mathrm{1}} \right)=\mathrm{0} \\ $$$$\mid{z}_{\mathrm{2}} \mid−\mathrm{1}\:=\frac{\mid{a}+\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }\mid\:}{\:\sqrt{{b}^{\mathrm{2}} \:+{c}^{\mathrm{2}} }}\:\:>\mathrm{1}\:\Rightarrow\:{z}_{\mathrm{2}} {is}\:{out}\:{of}\:{circle}\:\:\Rightarrow{Res}\left(\varphi,{z}_{\mathrm{2}\:} \right)=\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\varphi\left({z}\right){dz}\:=\mathrm{0} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
$${t}={tan}\frac{\theta}{\mathrm{2}}\:\:\:{dt}={sec}^{\mathrm{2}} \frac{\theta}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}{d}\theta \\ $$$${d}\theta=\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({a}+{b}×\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+{c}×\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)} \\ $$$$\int\frac{\mathrm{2}{dt}}{\left({a}+{at}^{\mathrm{2}} +\mathrm{2}{bt}+{c}−{ct}^{\mathrm{2}} \right)} \\ $$$$\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} \left({a}−{c}\right)+{t}\left(\mathrm{2}{b}\right)+{a}+{c}} \\ $$$$\frac{\mathrm{2}}{{a}−{c}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}.{t}.\frac{{b}}{{a}−{c}}+\frac{{a}+{c}}{{a}−{c}}} \\ $$$$\frac{\mathrm{2}}{{a}−{c}}\int\frac{{dt}}{\left({t}+\frac{{b}}{{a}−{c}}\right)^{\mathrm{2}} +\frac{{a}+{c}}{{a}−{c}}−\frac{{b}^{\mathrm{2}} }{\left({a}−{c}\right)^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{2}}{{a}−{c}}\int\frac{{dt}}{\left({t}+\frac{{b}}{{a}−{c}}\right)^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} −{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\left({a}−{c}\right)^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{2}}{{a}−{c}}×\frac{\mathrm{1}}{\:\sqrt{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\left({a}−{c}\right)^{\mathrm{2}} }}}×{tan}^{−\mathrm{1}} \left(\frac{{t}+\frac{{b}}{{a}−{c}}}{\:\sqrt{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}\mathrm{2}}{\left({a}−{c}\right)^{\mathrm{2}} }}}\right) \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{tan}^{−\mathrm{1}} \left(\frac{{t}+\frac{{b}}{{a}−{c}}}{\:\sqrt{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\left({a}−{c}\right)^{\mathrm{2}} }\:}}\right) \\ $$$${when}\:\theta\rightarrow\mathrm{0}\:\:{t}\rightarrow\mathrm{0} \\ $$$$\theta\rightarrow\mathrm{2}\pi\:\:{t}\rightarrow\mathrm{0} \\ $$$${thus}\:{value}\:{of}\:{inyregation}\:{zero} \\ $$$${pls}\:{check}\:{where}\:{i}\:{am}\:{wrong}.. \\ $$$${since}\:{a}^{\mathrm{2}} >\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$ \\ $$