Menu Close

let-a-2-gt-b-2-c-2-calculate-0-2pi-d-a-bsin-c-cos-




Question Number 46850 by maxmathsup by imad last updated on 01/Nov/18
let a^2 >b^(2 ) +c^2   calculate ∫_0 ^(2π)   (dθ/(a+bsinθ +c cosθ))
leta2>b2+c2calculate02πdθa+bsinθ+ccosθ
Commented by maxmathsup by imad last updated on 01/Nov/18
residus method  let I = ∫_0 ^(2π)    (dθ/(a+bsinθ +ccosθ))  changement z =e^(iθ)  give  I = ∫_(∣z∣=1)    (1/(a +b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2))) (dz/(iz)) =∫_(∣z∣=1)   (dz/(iz{a+b((z−z^(−1) )/(2i))+c((z+z^(−1) )/2)}))  = ∫_(∣z∣=1)      ((2dz)/(z{2ia +b(z−z^(−1) )+ci(z+z^(−1) ) }))  = ∫_(∣z∣=1)     ((2dz)/(2iaz +bz^2 −b +ciz^2  +ci)) =∫_(∣z∣=1)    ((2dz)/((b+ci)z^2  +2iaz +ci−b))  let ϕ(z) =(2/((b+ci)z^2  +2iaz +ci−b)) .poles of ϕ?  Δ^′  =(ia)^2 −(b+ci)(ci−b) =−a^2  −((ci)^2 −b^2 )  =−a^2  +b^2  +c^2  =−(a^2 −(b^2  +c^2 ))<0 ⇒ z_1 =((−ia +i(√(a^2 −b^2 −c^2 )))/(b+ci))  z_2 =((−ia−i(√(a^2 −b^2 −c^2 )))/(b+ci))  ∣z_1 ∣−1 =((∣a−(√(a^2 −b^2 −c^2 ))∣)/( (√(b^2  +c^2 )))) >1 ⇒z_1 is out of circle . ⇒Res(ϕ,z_1 )=0  ∣z_2 ∣−1 =((∣a+(√(a^2 −b^2 −c^2 ))∣ )/( (√(b^2  +c^2 ))))  >1 ⇒ z_2 is out of circle  ⇒Res(ϕ,z_(2 ) )=0  ∫_0 ^(2π)  ϕ(z)dz =0
residusmethodletI=02πdθa+bsinθ+ccosθchangementz=eiθgiveI=z∣=11a+bzz12i+cz+z12dziz=z∣=1dziz{a+bzz12i+cz+z12}=z∣=12dzz{2ia+b(zz1)+ci(z+z1)}=z∣=12dz2iaz+bz2b+ciz2+ci=z∣=12dz(b+ci)z2+2iaz+cibletφ(z)=2(b+ci)z2+2iaz+cib.polesofφ?Δ=(ia)2(b+ci)(cib)=a2((ci)2b2)=a2+b2+c2=(a2(b2+c2))<0z1=ia+ia2b2c2b+ciz2=iaia2b2c2b+ciz11=aa2b2c2b2+c2>1z1isoutofcircle.Res(φ,z1)=0z21=a+a2b2c2b2+c2>1z2isoutofcircleRes(φ,z2)=002πφ(z)dz=0
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
t=tan(θ/2)   dt=sec^2 (θ/2)×(1/2)dθ  dθ=((2dt)/(1+t^2 ))  ∫((2dt)/((1+t^2 )(a+b×((2t)/(1+t^2 ))+c×((1−t^2 )/(1+t^2 )))))  ∫((2dt)/((a+at^2 +2bt+c−ct^2 )))  2∫(dt/(t^2 (a−c)+t(2b)+a+c))  (2/(a−c))∫(dt/(t^2 +2.t.(b/(a−c))+((a+c)/(a−c))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a+c)/(a−c))−(b^2 /((a−c)^2 ))))  (2/(a−c))∫(dt/((t+(b/(a−c)))^2 +((a^2 −c^2 −b^2 )/((a−c)^2 ))))  (2/(a−c))×(1/( (√((a^2 −b^2 −c^2 )/((a−c)^2 )))))×tan^(−1) (((t+(b/(a−c)))/( (√((a^2 −b^2 −c2)/((a−c)^2 ))))))  =(2/( (√(a^2 −b^2 −c^2 ))))tan^(−1) (((t+(b/(a−c)))/( (√(((a^2 −b^2 −c^2 )/((a−c)^2 )) )))))  when θ→0  t→0  θ→2π  t→0  thus value of inyregation zero  pls check where i am wrong..  since a^2 >(b^2 +c^2 )
t=tanθ2dt=sec2θ2×12dθdθ=2dt1+t22dt(1+t2)(a+b×2t1+t2+c×1t21+t2)2dt(a+at2+2bt+cct2)2dtt2(ac)+t(2b)+a+c2acdtt2+2.t.bac+a+cac2acdt(t+bac)2+a+cacb2(ac)22acdt(t+bac)2+a2c2b2(ac)22ac×1a2b2c2(ac)2×tan1(t+baca2b2c2(ac)2)=2a2b2c2tan1(t+baca2b2c2(ac)2)whenθ0t0θ2πt0thusvalueofinyregationzeroplscheckwhereiamwrong..sincea2>(b2+c2)

Leave a Reply

Your email address will not be published. Required fields are marked *