Menu Close

let-A-a-b-c-d-use-the-augmented-matrix-A-I-and-elementary-row-operation-to-show-A-1-1-ad-bc-a-b-c-d-and-show-that-det-A-1-1-det-A-




Question Number 78670 by berket last updated on 19/Jan/20
let A= [((a  b)),((c  d)) ]use the augmented matrix[A I] and elementary row operation to show A^(−1) = (1/(ad bc)) [((a  b)),((c   d)) ]and show that det(A^(−1) )=(1/(det(A)))
letA=[abcd]usetheaugmentedmatrix[AI]andelementaryrowoperationtoshowA1=1adbc[abcd]andshowthatdet(A1)=1det(A)
Commented by abdomathmax last updated on 20/Jan/20
Pc(A)=det(A−xI) = determinant (((a−x       b)),((c          d−x)))  =(a−x)(d−x)−bc =ad−ax−dx+x^2 −bc  =ad−bc  −(a+d)x +x^2   cayley hamiton ⇒A^2 −(a+d)A  +(ad−bc)I =0 ⇒  A^2 −(a+d)A =(bc−ad)I   if bc−ad≠0 we get  (1/(bc−ad))A(A−(a+d)I)=I ⇒  A^(−1) =(1/(bc−ad))(A−(a+d)I =(1/(bc−ad))( (((a      b)),((c      d)) )− (((a+d     0)),((0      a+d)) ))  =(1/(bc−ad)) (((−d          b)),((c               −a)) )
Pc(A)=det(AxI)=|axbcdx|=(ax)(dx)bc=adaxdx+x2bc=adbc(a+d)x+x2cayleyhamitonA2(a+d)A+(adbc)I=0A2(a+d)A=(bcad)Iifbcad0weget1bcadA(A(a+d)I)=IA1=1bcad(A(a+d)I=1bcad((abcd)(a+d00a+d))=1bcad(dbca)
Commented by abdomathmax last updated on 20/Jan/20
A^(−1)  = ((((d/(ad−bc))         ((−b)/(ad−bc)))),((((−c)/(ad−bc))                   (a/(ad−bc)))) )
A1=(dadbcbadbccadbcaadbc)

Leave a Reply

Your email address will not be published. Required fields are marked *