Menu Close

let-a-and-b-be-positive-integers-such-that-ab-1-divides-a-2-b-2-show-that-a-2-b-2-ab-1-is-the-sequare-of-an-integer-




Question Number 187478 by normans last updated on 17/Feb/23
      let a and b be positive integers          such that ab + 1 divides a^2  + b^2 .            show that ((a^2  + b^2 )/(ab + 1))        is the sequare of an integer.
letaandbbepositiveintegerssuchthatab+1dividesa2+b2.showthata2+b2ab+1isthesequareofaninteger.
Answered by floor(10²Eta[1]) last updated on 18/Feb/23
  let ((a^2 +b^2 )/(ab+1))=k∈N⇒a^2 −kab+b^2 =k (I)  Suppose BWOC that k is not a perfect square⇒k≥2    Also suppose WLOG that a≥b  Let (a,b) be a solution of (I) with a minimal (by well ordering principle)  • If a=b⇒k=((2a^2 )/(a^2 +1))=((a^2 +1+a^2 −1)/(a^2 +1))⇒a^2 +1∣a^2 −1  but a^2 −1<a^2 +1 ∴ a^2 −1=0⇒a=1⇒k=1, contradiction.  • So a>b.    Consider the equation:   x^2 −kbx+b^2 −k=0 (★)  ⇒a is solution of (★). ∃ a_1  solution of (★)  ⇒a+a_1 =kb⇒a_1 =kb−a∈Z    1 case: a>kb⇒a≥kb+1  k=b^2 +a^2 −kab=b^2 +a+(a^2 −kab−a)  =b^2 +a+a(a−kb−1)≥b^2 +a  ⇒k≥b^2 +a>a>kb⇒k>kb⇒b<1, contradiction.    2 case: a=kb⇒a+a_1 =kb=a⇒a_1 =0  but a_1  is sol. of (★)⇒b^2 =k∴k is a perfect square  contradiction.    3 case: a<kb  k=b^2 +a^2 −kab=b^2 +a(a−kb)<b^2   So b^2 >k. But by (★): a.a_1 =b^2 −k>0⇒a_1 >0⇒a_1 ∈N  But, 0<a_1 =((b^2 −k)/a)<^↓^(k>1)  ((b^2 −1)/a)<^↓^(a>b)  ((a^2 −1)/a)<a⇒a_1 <a  But by (★),  a_1 ^2 −ka_1 b+b^2 −k=0  ⇒(a_1 ,b) is solution of (I) with a_1 <a, contradiction  because a is minimal.    So k has to be a perfect square. ■
leta2+b2ab+1=kNa2kab+b2=k(I)SupposeBWOCthatkisnotaperfectsquarek2AlsosupposeWLOGthatabLet(a,b)beasolutionof(I)withaminimal(bywellorderingprinciple)Ifa=bk=2a2a2+1=a2+1+a21a2+1a2+1a21buta21<a2+1a21=0a=1k=1,contradiction.Soa>b.Considertheequation:x2kbx+b2k=0()aissolutionof().a1solutionof()a+a1=kba1=kbaZ1case:a>kbakb+1k=b2+a2kab=b2+a+(a2kaba)=b2+a+a(akb1)b2+akb2+a>a>kbk>kbb<1,contradiction.2case:a=kba+a1=kb=aa1=0buta1issol.of()b2=kkisaperfectsquarecontradiction.3case:a<kbk=b2+a2kab=b2+a(akb)<b2Sob2>k.Butby():a.a1=b2k>0a1>0a1NBut,0<a1=b2ka<k>1b21a<a>ba21a<aa1<aButby(),a12ka1b+b2k=0(a1,b)issolutionof(I)witha1<a,contradictionbecauseaisminimal.Sokhastobeaperfectsquare.◼
Commented by normans last updated on 19/Feb/23
very nice
verynice

Leave a Reply

Your email address will not be published. Required fields are marked *