Menu Close

Let-a-b-2023-Find-values-of-a-b-N-




Question Number 178596 by Acem last updated on 18/Oct/22
Let (√a)+ (√b)= (√(2023))   , Find values of a, b ∈ N
Leta+b=2023,Findvaluesofa,bN
Commented by mr W last updated on 18/Oct/22
a=7(17−n)^2   b=7n^2   with n=1,2,...,16
a=7(17n)2b=7n2withn=1,2,,16
Commented by Acem last updated on 18/Oct/22
I like elegant solutions!    Tmorrow i will try this qusetion
Ilikeelegantsolutions!Tmorrowiwilltrythisqusetion
Commented by mr W last updated on 19/Oct/22
since 2023=7×17^2 , so in this case  the solution is very obvious.  (√a)+(√b)=17(√7)  a=7A^2 , b=7B^2   A+B=17  let B=n, then A=17−n  ⇒a=7(17−n)^2 , b=7n^2
since2023=7×172,sointhiscasethesolutionisveryobvious.a+b=177a=7A2,b=7B2A+B=17letB=n,thenA=17na=7(17n)2,b=7n2
Commented by mr W last updated on 19/Oct/22
and we can also see  (√a)+(√b)=(√(2022)) has no solution, since  2022=2×3×337 which doesn′t contain  a perfect square.
andwecanalsoseea+b=2022hasnosolution,since2022=2×3×337whichdoesntcontainaperfectsquare.
Answered by Rasheed.Sindhi last updated on 19/Oct/22
 { (((√a) +(√b) =17(√7) ....(i))),(((√a) −(√b) =u(√7) (say)....(ii))) :}[(√a) ,(√b) ≤17(√7) ]  (i)+(ii):  (√a) =(((17+u)(√7))/2)               a=((7(17+u)^2 )/4)≤; u∈O               a=((7(17+(2n+1))^2 )/4); n∈Z               a=((7(18+2n)^2 )/4); n∈Z   determinant ((( a=7(9+n)^2 ≤17(√7)  ; n∈Z)))  (i)−(ii):(√b) =(((17 −(2n+1))(√7))/2)               b=((7(17 −u)^2 )/4); u∈O               b=((7(17 −(2n+1))^2 )/4); n∈Z   determinant (((b=7(8 −n)^2 ≤17(√7) ; n∈Z)))   Continue....
{a+b=177.(i)ab=u7(say).(ii)[a,b177](i)+(ii):a=(17+u)72a=7(17+u)24;uOa=7(17+(2n+1))24;nZa=7(18+2n)24;nZa=7(9+n)2177;nZ(i)(ii):b=(17(2n+1))72b=7(17u)24;uOb=7(17(2n+1))24;nZb=7(8n)2177;nZContinue.

Leave a Reply

Your email address will not be published. Required fields are marked *