Menu Close

Let-a-b-are-positive-real-numbers-such-that-a-b-10-then-the-smallest-value-of-the-constant-k-for-which-x-2-ax-x-2-bx-lt-k-for-all-x-gt-0-is-




Question Number 33940 by rahul 19 last updated on 28/Apr/18
Let a,b are positive real numbers such  that a−b=10 , then the smallest value  of the constant k for which   (√((x^2 +ax))) − (√((x^2 +bx))) < k for all x>0   is ?
Leta,barepositiverealnumberssuchthatab=10,thenthesmallestvalueoftheconstantkforwhich(x2+ax)(x2+bx)<kforallx>0is?
Answered by MJS last updated on 28/Apr/18
a=r+5  b=r−5  (√(x^2 +rx+5x))−(√(x^2 +rx−5x))<k  we have to show that  lim_(x→∞) (√(x^2 +rx+5x))−(√(x^2 +rx−5x))=5  sorry I have no time right now...      (√(x^2 +rx+5x))−(√(x^2 +rx−5x))=k     (I.)            [x=y ⇒ (1/x)=(1/y)]  (1/( (√(x^2 +rx+5x))−(√(x^2 +rx−5x))))=(1/k)            [(1/(u−v))=((u+v)/((u−v)(u+v)))=((u+v)/(u^2 −v^2 ))]  (((√(x^2 +rx+5x))+(√(x^2 +rx−5x)))/(x^2 +rx+5x−(x^2 +rx−5x)))=(1/k)  (((√(x^2 +rx+5x))+(√(x^2 +rx−5x)))/(10x))=(1/k)  (√(x^2 +rx+5x))+(√(x^2 +rx−5x))=((10x)/k)     (II.)  2(√(x^2 +rx+5x))=k+((10x)/k)     (I.+II.)  4(x^2 +rx+5x)=k^2 +20x+((100x^2 )/k^2 )  (4−((100)/k^2 ))x^2 +4rx−k^2 =0  x^2 +((k^2 r)/(k^2 −25))x−(k^4 /(4(k^2 −25)))=0  x=−((k^2 r)/(2(k^2 −25)))±(k^2 /(2(k^2 −25)))(√(k^2 +r^2 −25))=  =((r±(√(k^2 +r^2 −25)))/(2(k^2 −25)))k^2   (1/x)=((2(k^2 −25))/(r±(√(k^2 +r^2 −25))))×(1/k^2 )  x→∞ ⇒ k^2 −25=0 ⇒ k=±5  (√(x^2 +rx+5x))−(√(x^2 +rx−5x))>0 ⇒ k=5
a=r+5b=r5x2+rx+5xx2+rx5x<kwehavetoshowthatlimxx2+rx+5xx2+rx5x=5sorryIhavenotimerightnowx2+rx+5xx2+rx5x=k(I.)[x=y1x=1y]1x2+rx+5xx2+rx5x=1k[1uv=u+v(uv)(u+v)=u+vu2v2]x2+rx+5x+x2+rx5xx2+rx+5x(x2+rx5x)=1kx2+rx+5x+x2+rx5x10x=1kx2+rx+5x+x2+rx5x=10xk(II.)2x2+rx+5x=k+10xk(I.+II.)4(x2+rx+5x)=k2+20x+100x2k2(4100k2)x2+4rxk2=0x2+k2rk225xk44(k225)=0x=k2r2(k225)±k22(k225)k2+r225==r±k2+r2252(k225)k21x=2(k225)r±k2+r225×1k2xk225=0k=±5x2+rx+5xx2+rx5x>0k=5
Commented by rahul 19 last updated on 28/Apr/18
No problem sir.   btw, how you came to know it should  be equal to 5?
Noproblemsir.btw,howyoucametoknowitshouldbeequalto5?
Commented by MJS last updated on 28/Apr/18
this is what seems obvious to me:  (√(x(x+c)))=(√((x+(c/2))^2 −(c^2 /4)))≈_(x→∞) x+(c/2)  (√(x(x+a)))−(√(x(x+b)))≈_(x→∞) x+(a/2)−(x+(b/2))=((a−b)/2)=((a−(a−10))/2)=5  not sure if this counts as proof...
thisiswhatseemsobvioustome:x(x+c)=(x+c2)2c24xx+c2x(x+a)x(x+b)xx+a2(x+b2)=ab2=a(a10)2=5notsureifthiscountsasproof
Commented by rahul 19 last updated on 28/Apr/18
Thank you sir .
Thankyousir.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18
(√((x^2 +ax)))  −(√((x^2 +bx))) <k  x(a−b)/(√((x_ ^2 +ax))) +(√((x^2 +bx)))  <k  (a−b)/(√((1+a/x)))  +(√((1+b/x))) <k  10/(√((1+a/x) )) +(√((1+b/x)))  <k  for smallest value of k the denominator shoul be        be maximum value  maximum value (√((1+a/x))) +(√((1+b/x)))  pls check the question
(x2+ax)(x2+bx)<kx(ab)/(x2+ax)+(x2+bx)<k(ab)/(1+a/x)+(1+b/x)<k10/(1+a/x)+(1+b/x)<kforsmallestvalueofkthedenominatorshoulbebemaximumvaluemaximumvalue(1+a/x)+(1+b/x)plscheckthequestion
Commented by rahul 19 last updated on 28/Apr/18
Wow! nice solution sir!
Wow!nicesolutionsir!
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Apr/18
f x→∞ the value of(√((1+a/x) )) +(√((1+b/x)))  is 2 so the value of k is 10/2=5
fxthevalueof(1+a/x)+(1+b/x)is2sothevalueofkis10/2=5
Commented by rahul 19 last updated on 29/Apr/18
 doubt :  we need to find max. value of  (√(1+(a/x))) + (√(1+(b/x))) → min. value of x  so why x→∞ ???  it should be x→0!
doubt:weneedtofindmax.valueof1+ax+1+bxmin.valueofxsowhyx???itshouldbex0!
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Apr/18
check the question ....when x→∞ the expression   has min value that is 2  the value of k is 10/2=5  whenx→0 the expression become ∞ , then   value of k is 10/∞=0   min value of k=0 and max value of k=5  the question posted by you  has some  error
checkthequestion.whenxtheexpressionhasminvaluethatis2thevalueofkis10/2=5whenx0theexpressionbecome,thenvalueofkis10/=0minvalueofk=0andmaxvalueofk=5thequestionpostedbyyouhassomeerror

Leave a Reply

Your email address will not be published. Required fields are marked *