Menu Close

Let-A-B-be-two-n-n-matrices-such-that-A-B-AB-then-prove-AB-BA-




Question Number 44708 by rahul 19 last updated on 03/Oct/18
Let A,B be two n×n matrices such  that A+B=AB then prove :  AB=BA ?
LetA,Bbetwon×nmatricessuchthatA+B=ABthenprove:AB=BA?
Answered by arcana last updated on 03/Oct/18
B=A(B−I)  AB=A^2 (B−I)=A(AB)−A^2   con lo nterior llegamos a AB(A−I)=A^2   reemplazando es AB=AB(A−I)(B−I)  luego necesariamente se tiene  ⇒(B−I)(A−I)=I  (A−I)^(−1) =B−I  la matriz inversa a izquierda coincide  con la matriz inversa a derecha  (A−I)(B−I)=I  asi, BA−A−B=0_(n×n)   ⇒BA=A+B=AB
B=A(BI)AB=A2(BI)=A(AB)A2conlonteriorllegamosaAB(AI)=A2reemplazandoesAB=AB(AI)(BI)luegonecesariamentesetiene(BI)(AI)=I(AI)1=BIlamatrizinversaaizquierdacoincideconlamatrizinversaaderecha(AI)(BI)=Iasi,BAAB=0n×nBA=A+B=AB
Commented by rahul 19 last updated on 04/Oct/18
Thanks sir!  But pls write in English from now  onwards , i found it very difficult  to understand.
Thankssir!ButplswriteinEnglishfromnowonwards,ifounditverydifficulttounderstand.

Leave a Reply

Your email address will not be published. Required fields are marked *