Menu Close

let-a-b-c-be-positive-real-numbers-such-that-ab-bc-ac-3-prove-the-inquality-a-b-2-c-2-a-2-bc-b-c-2-a-2-b-2-ac-c-b-2-a-2-c-2-ab-3-




Question Number 98983 by  M±th+et+s last updated on 17/Jun/20
let a,b,c be positive real numbers such  that ab+bc+ac=3   prove the inquality    ((a(b^2 +c^2 ))/(a^2 +bc))+((b(c^2 +a^2 ))/(b^2 +ac))+((c(b^2 +a^2 ))/(c^2 +ab))≥3
leta,b,cbepositiverealnumberssuchthatab+bc+ac=3provetheinqualitya(b2+c2)a2+bc+b(c2+a2)b2+ac+c(b2+a2)c2+ab3
Commented by MJS last updated on 17/Jun/20
due to symmetry extremes at a=b=c ⇒  ab+bc+ac=3 ⇔ 3a^2 =3 ⇒ a=±1  but a>0 ⇒ a=b=c=1  the inequation with a=b=c turns into  3a≥3 ⇒ true for a=1  now test if this is min or max by putting  a=.999; b=1.001 ⇒ c=1.0000005  ⇒ lhs >3  ⇒ proven  I know you want a different kind of proof  but this is the easiest path
duetosymmetryextremesata=b=cab+bc+ac=33a2=3a=±1buta>0a=b=c=1theinequationwitha=b=cturnsinto3a3truefora=1nowtestifthisisminormaxbyputtinga=.999;b=1.001c=1.0000005lhs>3provenIknowyouwantadifferentkindofproofbutthisistheeasiestpath
Commented by  M±th+et+s last updated on 17/Jun/20
this is a good proof thank you
thisisagoodproofthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *