Menu Close

Let-a-b-c-be-real-numbers-such-that-a-b-c-0-Prove-that-a-2-b-2-c-2-4-ab-bc-ca-3-27-0-




Question Number 177068 by LOSER last updated on 30/Sep/22
Let a,b,c be real numbers such that:  a+b+c=0. Prove that:  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))≤0
Leta,b,cberealnumberssuchthat:a+b+c=0.Provethat:a2b2c24+(ab+bc+ca)3270
Answered by Frix last updated on 30/Sep/22
c=−a−b  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))=  =−(((a−b)^2 (a+2b)^2 (2a+b)^2 )/(108))≤0 obviously true
c=aba2b2c24+(ab+bc+ca)327==(ab)2(a+2b)2(2a+b)21080obviouslytrue
Commented by Frix last updated on 30/Sep/22
how I got this:  c=−a−b∧b=pa ⇒ c=−a(1+p)  ((a^2 b^2 c^2 )/4)+(((ab+bc+ca)^3 )/(27))=  =−((a^6 (p^6 +3p^5 −((3p^4 )/4)−((13p^3 )/2)−((3p^2 )/4)+3p+1))/(27))  factors of the polynome  p^6 +3p^5 −((3p^4 )/4)−((13p^3 )/2)−((3p^2 )/4)+3p+1  p=q−(1/2)  q^6 −((9q^4 )/2)+((81q^2 )/(16))  q^2 (q^2 −(9/4))^2   q^2 (q−(3/2))^2 (q+(3/2))^2   q=p+(1/2)  (p−1)^2 (p+2)^2 (p+(1/2))^2   p=(b/a)  (((a−b)^2 (a+2b)^2 (2a+b)^2 )/(4a^6 ))
howIgotthis:c=abb=pac=a(1+p)a2b2c24+(ab+bc+ca)327==a6(p6+3p53p4413p323p24+3p+1)27factorsofthepolynomep6+3p53p4413p323p24+3p+1p=q12q69q42+81q216q2(q294)2q2(q32)2(q+32)2q=p+12(p1)2(p+2)2(p+12)2p=ba(ab)2(a+2b)2(2a+b)24a6
Commented by LOSER last updated on 01/Oct/22
You′re too strong, sir!
Youretoostrong,sir!

Leave a Reply

Your email address will not be published. Required fields are marked *