Menu Close

Let-a-b-c-be-the-posetive-integer-such-that-b-a-is-an-also-integer-if-a-b-c-are-in-GP-and-AM-of-a-b-c-is-b-2-then-find-the-value-of-a-2-a-14-a-1-




Question Number 17595 by virus last updated on 08/Jul/17
Let a,b,c be the posetive integer such that   b/a is an also integer if a,b,c are in GP and   AM of a,b,c is(b+2) then find the value of  (a^2 +a−14)/(a+1)
$${Let}\:{a},{b},{c}\:{be}\:{the}\:{posetive}\:{integer}\:{such}\:{that}\: \\ $$$${b}/{a}\:{is}\:{an}\:{also}\:{integer}\:{if}\:{a},{b},{c}\:{are}\:{in}\:{GP}\:{and}\: \\ $$$${AM}\:{of}\:{a},{b},{c}\:{is}\left({b}+\mathrm{2}\right)\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\left({a}^{\mathrm{2}} +{a}−\mathrm{14}\right)/\left({a}+\mathrm{1}\right) \\ $$
Commented by virus last updated on 08/Jul/17
fine
$${fine} \\ $$
Answered by mrW1 last updated on 08/Jul/17
b=na  (b/a)=(c/b)  ⇒c=n^2 a  ((a+b+c)/3)=b+2  ⇒((a+na+n^2 a)/3)=na+2  ⇒a+na+n^2 a=3na+6  ⇒n^2 −2n+(1−(6/a))=0  n=((2+(√(4−4(1−(6/a)))))/2)=1+(√(6/a))  ⇒a=6  ⇒n=2⇒b=12⇒c=24  (a^2 +a−14)/(a+1)=(36+6−14)/7=4
$$\mathrm{b}=\mathrm{na} \\ $$$$\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}} \\ $$$$\Rightarrow\mathrm{c}=\mathrm{n}^{\mathrm{2}} \mathrm{a} \\ $$$$\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{3}}=\mathrm{b}+\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{a}+\mathrm{na}+\mathrm{n}^{\mathrm{2}} \mathrm{a}}{\mathrm{3}}=\mathrm{na}+\mathrm{2} \\ $$$$\Rightarrow\mathrm{a}+\mathrm{na}+\mathrm{n}^{\mathrm{2}} \mathrm{a}=\mathrm{3na}+\mathrm{6} \\ $$$$\Rightarrow\mathrm{n}^{\mathrm{2}} −\mathrm{2n}+\left(\mathrm{1}−\frac{\mathrm{6}}{\mathrm{a}}\right)=\mathrm{0} \\ $$$$\mathrm{n}=\frac{\mathrm{2}+\sqrt{\mathrm{4}−\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{6}}{\mathrm{a}}\right)}}{\mathrm{2}}=\mathrm{1}+\sqrt{\frac{\mathrm{6}}{\mathrm{a}}} \\ $$$$\Rightarrow\mathrm{a}=\mathrm{6} \\ $$$$\Rightarrow\mathrm{n}=\mathrm{2}\Rightarrow\mathrm{b}=\mathrm{12}\Rightarrow\mathrm{c}=\mathrm{24} \\ $$$$\left(\mathrm{a}^{\mathrm{2}} +\mathrm{a}−\mathrm{14}\right)/\left(\mathrm{a}+\mathrm{1}\right)=\left(\mathrm{36}+\mathrm{6}−\mathrm{14}\right)/\mathrm{7}=\mathrm{4} \\ $$
Commented by virus last updated on 08/Jul/17
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by chux last updated on 09/Jul/17
mr W1.... please how is n=2
$$\mathrm{mr}\:\mathrm{W1}….\:\mathrm{please}\:\mathrm{how}\:\mathrm{is}\:\mathrm{n}=\mathrm{2} \\ $$
Commented by mrW1 last updated on 09/Jul/17
n=1+(√(6/a))  since n and a are positive integers,  the only solution is a=6 and then  n=2.
$$\mathrm{n}=\mathrm{1}+\sqrt{\frac{\mathrm{6}}{\mathrm{a}}} \\ $$$$\mathrm{since}\:\mathrm{n}\:\mathrm{and}\:\mathrm{a}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}, \\ $$$$\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{a}=\mathrm{6}\:\mathrm{and}\:\mathrm{then} \\ $$$$\mathrm{n}=\mathrm{2}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *