Menu Close

Let-a-b-c-gt-0-and-a-b-b-c-4-Prove-that-1-a-1-b-1-c-b-ca-27-8-Found-by-WolframAlpha-




Question Number 144676 by loveineq last updated on 27/Jun/21
Let a,b,c > 0 and (a+b)(b+c) = 4. Prove that                           (1/a)+(1/b)+(1/c)+(b/(ca)) ≥ ((27)/8)  (Found by WolframAlpha)
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{{b}}{{ca}}\:\geqslant\:\frac{\mathrm{27}}{\mathrm{8}} \\ $$$$\left(\mathrm{Found}\:\mathrm{by}\:\mathrm{WolframAlpha}\right) \\ $$
Answered by ArielVyny last updated on 27/Jun/21
  suppose abc≤1  27abc≤32  ((27)/8)abc≤4  ((27)/8)≤(4/(abc))  or 4=(a+b)(b+c)  ((27)/8)≤((cb+ac+ab+b^2 )/(abc))  ((27)/8)≤(1/a)+(1/b)+(1/c)+(b/(ac))  then (1/a)+(1/b)+(1/c)+(b/(ac))≥((27)/8)
$$ \\ $$$${suppose}\:{abc}\leqslant\mathrm{1} \\ $$$$\mathrm{27}{abc}\leqslant\mathrm{32} \\ $$$$\frac{\mathrm{27}}{\mathrm{8}}{abc}\leqslant\mathrm{4} \\ $$$$\frac{\mathrm{27}}{\mathrm{8}}\leqslant\frac{\mathrm{4}}{{abc}} \\ $$$${or}\:\mathrm{4}=\left({a}+{b}\right)\left({b}+{c}\right) \\ $$$$\frac{\mathrm{27}}{\mathrm{8}}\leqslant\frac{{cb}+{ac}+{ab}+{b}^{\mathrm{2}} }{{abc}} \\ $$$$\frac{\mathrm{27}}{\mathrm{8}}\leqslant\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{{b}}{{ac}} \\ $$$${then}\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{{b}}{{ac}}\geqslant\frac{\mathrm{27}}{\mathrm{8}} \\ $$$$ \\ $$
Commented by loveineq last updated on 28/Jun/21
nice and thanks.
$${nice}\:{and}\:{thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *