Menu Close

Let-a-b-c-gt-0-and-a-b-b-c-4-Prove-that-1-a-2-2b-2-c-2-2b-c-2-a-2-c-a-6-2-a-3-3b-3-c-3-3b-c-3-a-3-c-a-8-3-a-




Question Number 144634 by loveineq last updated on 27/Jun/21
Let a,b,c > 0 and (a+b)(b+c) = 4. Prove that          (1)               a^2 +2b^2 +c^2 +((2b(c^2 +a^2 ))/(c+a)) ≥ 6  (2)               a^3 +3b^3 +c^3 +((3b(c^3 +a^3 ))/(c+a)) ≥ 8  (3)               a^4 +4b^4 +c^4 +((4b(c^4 +a^4 ))/(c+a)) ≥ 10
Leta,b,c>0and(a+b)(b+c)=4.Provethat(1)a2+2b2+c2+2b(c2+a2)c+a6(2)a3+3b3+c3+3b(c3+a3)c+a8(3)a4+4b4+c4+4b(c4+a4)c+a10
Answered by mindispower last updated on 27/Jun/21
c^2 +a^2 ≥(1/2)(c+a)^2   (1)⇔≥a^2 +2b^2 +c^2 +b(c+a)  a^2 +c^2 ≥ac+(1/2)(a^2 +c^2 )  ≥(b^2 +bc+ac+cb)+b^2 +(1/2)(a^2 +c^2 )  b^2 +bc+ac+cb+((a^2 +c^2 )/2)=t  (b+a)(b+c)+(1/4)(b^2 +a^2 )+(1/4)(b^2 +c^2 )+(1/2)b^2 +(1/4)(a^2 +c^2 )  ≥4+(1/4).2ab+(1/4).2bc+(1/2)b^2 +((2ac)/4)=4+(1/2)(b^2 +ac+bc+ab)  =4+(1/2)(b+a)(b+c)=6  ⇔≥6
c2+a212(c+a)2(1)⇔⩾a2+2b2+c2+b(c+a)a2+c2ac+12(a2+c2)(b2+bc+ac+cb)+b2+12(a2+c2)b2+bc+ac+cb+a2+c22=t(b+a)(b+c)+14(b2+a2)+14(b2+c2)+12b2+14(a2+c2)4+14.2ab+14.2bc+12b2+2ac4=4+12(b2+ac+bc+ab)=4+12(b+a)(b+c)=6⇔⩾6
Answered by mindispower last updated on 27/Jun/21
(2) i think ((3b(c^3 +a^3 ))/(c+a))....?  (3)...(4) Weighted AM worcks
(2)ithink3b(c3+a3)c+a.?(3)(4)WeightedAMworcks
Commented by loveineq last updated on 27/Jun/21
yes, is ((c^3 +a^3 )/(c+a)).
yes,isc3+a3c+a.

Leave a Reply

Your email address will not be published. Required fields are marked *