Menu Close

let-a-b-c-gt-0-and-a-b-c-3-find-min-value-of-the-expression-S-abc-a-1-2-b-1-2-c-1-2-




Question Number 155547 by mathdanisur last updated on 02/Oct/21
let  a;b;c>0  and a+b+c=3  find min value of the expression:  S = abc + (a-1)^2  + (b-1)^2  + (c-1)^2
$$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{S}\:=\:\mathrm{abc}\:+\:\left(\mathrm{a}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{b}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{c}-\mathrm{1}\right)^{\mathrm{2}} \\ $$
Answered by ghimisi last updated on 02/Oct/21
p=3  p^3 ≥27r⇒r≤1  schur⇒p^3 +9r≥4pq⇒3r−4q≥−9  S=r+a^2 +b^2 +c^2 −2(a+b+c)+3  S=r+p^2 −2q−2p+3=6+r−2q  2S=12+3r−4q−r≥12−9−1=2  ⇒minS=1   (a=b=c=1)
$${p}=\mathrm{3} \\ $$$${p}^{\mathrm{3}} \geqslant\mathrm{27}{r}\Rightarrow{r}\leqslant\mathrm{1} \\ $$$${schur}\Rightarrow{p}^{\mathrm{3}} +\mathrm{9}{r}\geqslant\mathrm{4}{pq}\Rightarrow\mathrm{3}{r}−\mathrm{4}{q}\geqslant−\mathrm{9} \\ $$$${S}={r}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}\left({a}+{b}+{c}\right)+\mathrm{3} \\ $$$${S}={r}+{p}^{\mathrm{2}} −\mathrm{2}{q}−\mathrm{2}{p}+\mathrm{3}=\mathrm{6}+{r}−\mathrm{2}{q} \\ $$$$\mathrm{2}{S}=\mathrm{12}+\mathrm{3}{r}−\mathrm{4}{q}−{r}\geqslant\mathrm{12}−\mathrm{9}−\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow{minS}=\mathrm{1}\:\:\:\left({a}={b}={c}=\mathrm{1}\right) \\ $$
Commented by mathdanisur last updated on 02/Oct/21
Very nice Ser, thank you so much
$$\mathrm{Very}\:\mathrm{nice}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *