Menu Close

Let-a-b-c-gt-0-and-abc-1-Prove-that-a-3-a-1-2-b-3-b-1-2-c-3-c-1-2-a-b-c-4-




Question Number 145615 by loveineq last updated on 06/Jul/21
Let a,b,c > 0 and abc = 1. Prove that                 (a^3 /((a+1)^2 ))+(b^3 /((b+1)^2 ))+(c^3 /((c+1)^2 )) ≥((a+b+c)/4)
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{abc}\:=\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} }{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{b}^{\mathrm{3}} }{\left({b}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{c}^{\mathrm{3}} }{\left({c}+\mathrm{1}\right)^{\mathrm{2}} }\:\geqslant\frac{{a}+{b}+{c}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by justtry last updated on 10/Jul/21
Commented by loveineq last updated on 10/Jul/21
Thanks
$$\mathrm{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *