Menu Close

Let-a-b-c-R-a-0-such-that-a-and-4a-3b-2c-have-the-same-sign-Show-that-the-equation-ax-2-bx-c-0-can-not-have-both-roots-in-the-interval-1-2-




Question Number 18384 by Tinkutara last updated on 19/Jul/17
Let a, b, c ∈ R, a ≠ 0, such that a and  4a + 3b + 2c have the same sign. Show  that the equation ax^2  + bx + c = 0 can  not have both roots in the interval  (1, 2).
Leta,b,cR,a0,suchthataand4a+3b+2chavethesamesign.Showthattheequationax2+bx+c=0cannothavebothrootsintheinterval(1,2).
Answered by Tinkutara last updated on 22/Jul/17
Let α and β be the roots of the equation.  Let a ≥ 0 so that 4a + 3b + 2c ≥ 0  ⇒ 4 + 3(b/a) + 2(c/a) ≥ 0  ⇒ 4 − 3(α + β) + 2αβ ≥ 0  ⇒ (α − 1)(β − 2) + (α − 2)(β − 1) ≥ 0,  which is not possible if both α and β  belong to (1, 2).
Letαandβbetherootsoftheequation.Leta0sothat4a+3b+2c04+3ba+2ca043(α+β)+2αβ0(α1)(β2)+(α2)(β1)0,whichisnotpossibleifbothαandβbelongto(1,2).

Leave a Reply

Your email address will not be published. Required fields are marked *