Menu Close

let-a-b-c-R-such-that-a-b-c-3-prove-that-a-3-b-3-c-3-a-3-b-b-3-c-c-3-a-




Question Number 162042 by HongKing last updated on 25/Dec/21
let  a;b;c∈R  such that  a+b+c=3  prove that:  a^3  + b^3  + c^3  ≥ a^3 b + b^3 c + c^3 a
$$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}\in\mathbb{R}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:\geqslant\:\mathrm{a}^{\mathrm{3}} \mathrm{b}\:+\:\mathrm{b}^{\mathrm{3}} \mathrm{c}\:+\:\mathrm{c}^{\mathrm{3}} \mathrm{a} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *