Menu Close

Let-a-b-gt-0-and-a-b-1-3ab-Prove-that-1-a-2-a-1-b-2-b-1-a-a-2-1-b-b-2-1-2-a-2-b-1-b-2-a-1-a-b-2-1-b-a-2-1-




Question Number 144951 by loveineq last updated on 30/Jun/21
Let a,b > 0 and a+b+1 = 3ab. Prove that  (1)               (a^2 /(a+1))+(b^2 /(b+1)) ≥ (a/(a^2 +1))+(b/(b^2 +1))  (2)               (a^2 /(b+1))+(b^2 /(a+1)) ≥ (a/(b^2 +1))+(b/(a^2 +1))
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{{a}+\mathrm{1}}+\frac{{b}^{\mathrm{2}} }{{b}+\mathrm{1}}\:\geqslant\:\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{{b}+\mathrm{1}}+\frac{{b}^{\mathrm{2}} }{{a}+\mathrm{1}}\:\geqslant\:\frac{{a}}{{b}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$
Commented by justtry last updated on 01/Jul/21
(1) remember AM≥GM  (1+a^2 )≥ 2a  (1+a^2 )≥(1+a)^2 −(1+a^2 )  (1+a^2 )+(1+a^2 )≥(1+a)^2 −(1+a^2 )+(1+a^2 )  2(a^2 +1)≥(1+a)^2   (1/((a+1)^2 ))≥(1/(2(a^2 +1))) .....(i)  multply (i) with a^2 and (a+1)  (a^2 /((a+1)^2 ))≥(a^2 /(2(a^2 +1)))≥(a/(2(a^2 +1)))  ((a^2 (a+1))/((a+1)^2 ))≥((a(a+1))/(2(a^2 +1)))  (a^2 /((a+1)))≥((a^2 +a)/(2(a^2 +1)))≥((a(√a))/((a^2 +1)))≥(a/((a^2 +1))) →AM≥GM  ((a^2 +a)/2)≥a(√a)                                     →a+b+1=3ab, choose a=1 ⇒                                a(√a)≥a  so  (a^2 /(a+1))≥(a/(a^2 +1)) ...(ii)  similary for b   (b^2 /(b+1))≥(b/(b^2 +1)) ...(iii)  from (ii) &(iii)  (a^2 /(a+1)) + (b^2 /(b+1)) ≥ (a/(a^2 +1)) + (b/(b^2 +1))
$$\left(\mathrm{1}\right)\:{remember}\:{AM}\geqslant{GM} \\ $$$$\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\geqslant\:\mathrm{2}{a} \\ $$$$\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\geqslant\left(\mathrm{1}+{a}\right)^{\mathrm{2}} −\left(\mathrm{1}+{a}^{\mathrm{2}} \right) \\ $$$$\left(\mathrm{1}+{a}^{\mathrm{2}} \right)+\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\geqslant\left(\mathrm{1}+{a}\right)^{\mathrm{2}} −\left(\mathrm{1}+{a}^{\mathrm{2}} \right)+\left(\mathrm{1}+{a}^{\mathrm{2}} \right) \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)\geqslant\left(\mathrm{1}+{a}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }\geqslant\frac{\mathrm{1}}{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}\:…..\left({i}\right) \\ $$$${multply}\:\left({i}\right)\:{with}\:{a}^{\mathrm{2}} {and}\:\left({a}+\mathrm{1}\right) \\ $$$$\frac{{a}^{\mathrm{2}} }{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }\geqslant\frac{{a}^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}\geqslant\frac{{a}}{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\frac{{a}^{\mathrm{2}} \left({a}+\mathrm{1}\right)}{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }\geqslant\frac{{a}\left({a}+\mathrm{1}\right)}{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\frac{{a}^{\mathrm{2}} }{\left({a}+\mathrm{1}\right)}\geqslant\frac{{a}^{\mathrm{2}} +{a}}{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}\geqslant\frac{{a}\sqrt{{a}}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right)}\geqslant\frac{{a}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right)}\:\rightarrow{AM}\geqslant{GM}\:\:\frac{{a}^{\mathrm{2}} +{a}}{\mathrm{2}}\geqslant{a}\sqrt{{a}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rightarrow{a}+{b}+\mathrm{1}=\mathrm{3}{ab},\:{choose}\:{a}=\mathrm{1}\:\Rightarrow \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\sqrt{{a}}\geqslant{a} \\ $$$${so} \\ $$$$\frac{{a}^{\mathrm{2}} }{{a}+\mathrm{1}}\geqslant\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}\:…\left({ii}\right) \\ $$$${similary}\:{for}\:{b}\: \\ $$$$\frac{{b}^{\mathrm{2}} }{{b}+\mathrm{1}}\geqslant\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}}\:…\left({iii}\right) \\ $$$${from}\:\left({ii}\right)\:\&\left({iii}\right) \\ $$$$\frac{{a}^{\mathrm{2}} }{{a}+\mathrm{1}}\:+\:\frac{{b}^{\mathrm{2}} }{{b}+\mathrm{1}}\:\geqslant\:\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}\:+\:\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *