Question Number 144823 by loveineq last updated on 29/Jun/21
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\:\leqslant\:{a}+{b} \\ $$
Answered by ArielVyny last updated on 30/Jun/21
$${we}\:{know}\:{that}\:{a}+{b}+\mathrm{1}=\mathrm{3}{ab} \\ $$$${we}\:{suppose}\:{ab}\geqslant\mathrm{1} \\ $$$$\left({a}+\mathrm{1}\right)=\mathrm{3}{ab}−{b} \\ $$$$\left({a}+\mathrm{1}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \left(\mathrm{3}{a}−\mathrm{1}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \left(\mathrm{9}{a}^{\mathrm{2}} +\mathrm{1}−\mathrm{9}{a}\right) \\ $$$${a}+\mathrm{1}\leqslant\mathrm{9}{ab}\:\left(\mathrm{1}\right)\:\:\:\rightarrow{b}+\mathrm{1}\leqslant\mathrm{9}{ab}\:\left(\mathrm{2}\right) \\ $$$$\frac{\left(\mathrm{1}\right)}{\left(\mathrm{2}\right)}+\frac{\left(\mathrm{2}\right)}{\left(\mathrm{1}\right)}\rightarrow\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2} \\ $$$${then}\:\:\mathrm{3}\leqslant\mathrm{3}{ab}\rightarrow\mathrm{2}\leqslant\mathrm{3}{ab}−\mathrm{1} \\ $$$${we}\:{have}\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2}\leqslant\mathrm{3}{ab}−\mathrm{1}={a}+{b} \\ $$$$\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2}\leqslant{a}+{b} \\ $$$${finally}\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant{a}+{b}\:\:\:\:\left({ab}\geqslant\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$