Menu Close

Let-a-b-gt-0-and-x-0-pi-2-Prove-a-sinx-1-b-cosx-1-1-2ab-2-




Question Number 117832 by snipers237 last updated on 13/Oct/20
Let a,b>0  and x∈]0;(π/2)[     Prove   ((a/(sinx))+1)((b/(cosx))+1)≥(1+(√(2ab)))^2
Leta,b>0andx]0;π2[Prove(asinx+1)(bcosx+1)(1+2ab)2
Answered by 1549442205PVT last updated on 14/Oct/20
From the hypothesis a,b>0  and x∈]0;(π/2)[   we have sinx>0,cosx>0.Hence  L.H.S=(a/(sinx))+(b/(cosx))+((ab)/(sinxcosx))+1  =((√(a/(sinx)))−(√(b/(cosx))))^2 +2(√((ab)/(sinxcosx)))  +((2ab)/(sin2x))+1≥2(√((2ab)/(sin2x)))+((2ab)/(sin2x))+1  ≥2ab+2(√(2ab))+1=(1+(√(2ab)))^2   (due to  0<sin2x≤1).Hence,the inequality    ((a/(sinx))+1)((b/(cosx))+1)≥(1+(√(2ab)))^2   is proved.The equality ocurrs if and  only if    { (( (a/(sinx))=(b/(cosx)))),((sin2x=1)) :} ⇔ { ((x=(π/4))),((a=b)) :}
Fromthehypothesisa,b>0andx]0;π2[wehavesinx>0,cosx>0.HenceL.H.S=asinx+bcosx+absinxcosx+1=(asinxbcosx)2+2absinxcosx+2absin2x+122absin2x+2absin2x+12ab+22ab+1=(1+2ab)2(dueto0<sin2x1).Hence,theinequality(asinx+1)(bcosx+1)(1+2ab)2isproved.Theequalityocurrsifandonlyif{asinx=bcosxsin2x=1{x=π4a=b

Leave a Reply

Your email address will not be published. Required fields are marked *