Menu Close

Let-A-be-the-collection-of-functions-f-0-1-R-which-have-an-infinite-number-of-derivatives-Let-A-0-A-be-the-subcollection-of-those-functions-f-with-f-0-0-Define-D-A-0-A-by-D-f-df




Question Number 21463 by dioph last updated on 24/Sep/17
Let A be the collection of functions  f : [0, 1] → R which have an infinite  number of derivatives. Let A_0  ⊂ A  be the subcollection of those functions  f with f(0) = 0. Define D : A_0  → A  by D(f) = df/dx. Use the mean value  theorem to show that D is injective.  Use the fundamental theorem of  calculus to show that D is surjective.
$$\mathrm{Let}\:{A}\:\mathrm{be}\:\mathrm{the}\:\mathrm{collection}\:\mathrm{of}\:\mathrm{functions} \\ $$$${f}\::\:\left[\mathrm{0},\:\mathrm{1}\right]\:\rightarrow\:\mathbb{R}\:\mathrm{which}\:\mathrm{have}\:\mathrm{an}\:\mathrm{infinite} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{derivatives}.\:\mathrm{Let}\:{A}_{\mathrm{0}} \:\subset\:{A} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{subcollection}\:\mathrm{of}\:\mathrm{those}\:\mathrm{functions} \\ $$$${f}\:\mathrm{with}\:{f}\left(\mathrm{0}\right)\:=\:\mathrm{0}.\:\mathrm{Define}\:{D}\::\:{A}_{\mathrm{0}} \:\rightarrow\:{A} \\ $$$$\mathrm{by}\:{D}\left({f}\right)\:=\:{df}/{dx}.\:\mathrm{Use}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{value} \\ $$$$\mathrm{theorem}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:{D}\:\mathrm{is}\:\mathrm{injective}. \\ $$$$\mathrm{Use}\:\mathrm{the}\:\mathrm{fundamental}\:\mathrm{theorem}\:\mathrm{of} \\ $$$$\mathrm{calculus}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:{D}\:\mathrm{is}\:\mathrm{surjective}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *