Let-A-be3-3-matrix-with-eigen-values-1-1-0-Then-determinant-of-I-A-100- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 59295 by pooja24 last updated on 07/May/19 LetAbe3×3matrixwitheigenvalues1,−1,0.ThendeterminantofI+A100=?? Answered by alex041103 last updated on 10/May/19 basicallyA=PDP−1whereDisadiagonalmatrix⇒A100=PD100P−1alsoI=PIP−1⇒M=I+A100=P(I+D100)P−1Thendet(M)=det(P)det(I+D100)det(P−1)==[det(P)det(P−1)]det(I+D100)==det(PP−1)det(I+D100)==det(I)det(I+D100)==det(I+D100)=det(M)WedefinePasthematrixwhichgetsusfromthenormalsystemofcoordinatestothesystemofthecoordinateswhichusestheeigenvectorsasbasisvectors.ThenDisadiagonalmatrixwiththeeigenvaluesinit.⇒D=[00001000−1]⇒D100=[000010001]⇒det(M)=|100020002|=4⇒det(I+A100)=4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: nice-calculus-prove-that-lim-x-xe-1-x-e-1-x-1-x-2-euler-mascheroni-constant-Next Next post: Question-190371 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.