Menu Close

Let-A-be3-3-matrix-with-eigen-values-1-1-0-Then-determinant-of-I-A-100-




Question Number 59295 by pooja24 last updated on 07/May/19
Let A be3×3 matrix with eigen values  1,−1,0. Then determinant of I+A^(100 ) =??
LetAbe3×3matrixwitheigenvalues1,1,0.ThendeterminantofI+A100=??
Answered by alex041103 last updated on 10/May/19
basically  A=PDP^(−1)   where D is a diagonal matrix  ⇒A^(100) =PD^(100) P^(−1)   also I=PIP^(−1)   ⇒M=I+A^(100) =P(I+D^(100) )P^(−1)   Then det(M)=det(P)det(I+D^(100) )det(P^(−1) )=  =[det(P)det(P^(−1) )]det(I+D^(100) )=  =det(PP^(−1) )det(I+D^(100) )=  =det(I)det(I+D^(100) )=  =det(I+D^(100) )=det(M)  We define P as the matrix which gets   us from the normal system of coordinates to the  system of the coordinates which uses  the eigen vectors as basis vectors. Then  D is a diagonal matrix with the eigen  values in it.  ⇒D= [(0,0,0),(0,1,0),(0,0,(−1)) ]  ⇒D^(100) = [(0,0,0),(0,1,0),(0,0,1) ]  ⇒det(M)= determinant ((1,0,0),(0,2,0),(0,0,2))=4  ⇒det(I+A^(100) )=4
basicallyA=PDP1whereDisadiagonalmatrixA100=PD100P1alsoI=PIP1M=I+A100=P(I+D100)P1Thendet(M)=det(P)det(I+D100)det(P1)==[det(P)det(P1)]det(I+D100)==det(PP1)det(I+D100)==det(I)det(I+D100)==det(I+D100)=det(M)WedefinePasthematrixwhichgetsusfromthenormalsystemofcoordinatestothesystemofthecoordinateswhichusestheeigenvectorsasbasisvectors.ThenDisadiagonalmatrixwiththeeigenvaluesinit.D=[000010001]D100=[000010001]det(M)=|100020002|=4det(I+A100)=4

Leave a Reply

Your email address will not be published. Required fields are marked *