Menu Close

let-a-C-and-a-lt-1-prove-that-the-function-f-x-n-0-a-n-x-n-is-developpable-at-point-1-and-the-radius-is-r-1-




Question Number 33891 by math khazana by abdo last updated on 26/Apr/18
let a∈C and ∣a∣<1 prove that the function  f(x)= Σ_(n=0) ^(+∞)  (a^n /(x+n)) is?developpable at point 1 and  the radius is r=1.
letaCanda∣<1provethatthefunctionf(x)=n=0+anx+nis?developpableatpoint1andtheradiusisr=1.
Commented by abdo imad last updated on 28/Apr/18
f is C^∞  inside R  and f^((p)) (x) =Σ_(n=0) ^∞ a^n (((−1)^p p!)/((x+n)^(p+1) ))  ⇒ f^((p)) (1) =Σ_(n=0) ^∞  a^n  (((−1)^p p!)/((n+1)^(p+1) )) =(−1)^p p!Σ_(n=0) ^∞  (a^n /((n+1)^(p+1) ))  =(−1)^p p! Σ_(n=1) ^∞   (a^(n−1) /n^(p+1) )  and we have  f(x) =Σ_(p=0) ^∞  ((f^((p)) (1))/(p!)) (x−1)^p   =Σ_(p=0) ^∞ (−1)^p (Σ_(n=1) ^∞  (a^(n−1) /n^(p+1) ))(x−1)^p   .
fisCinsideRandf(p)(x)=n=0an(1)pp!(x+n)p+1f(p)(1)=n=0an(1)pp!(n+1)p+1=(1)pp!n=0an(n+1)p+1=(1)pp!n=1an1np+1andwehavef(x)=p=0f(p)(1)p!(x1)p=p=0(1)p(n=1an1np+1)(x1)p.

Leave a Reply

Your email address will not be published. Required fields are marked *