Menu Close

let-A-dx-x-2-j-with-j-e-i-2pi-3-extract-ReA-and-Im-A-and-calculste-its-values-




Question Number 34421 by abdo mathsup 649 cc last updated on 06/May/18
let A  = ∫_(−∞) ^(+∞)     (dx/(x^2  −j))    with j=e^(i((2π)/3))   extract  ReA and Im(A) and calculste its values.
letA=+dxx2jwithj=ei2π3extractReAandIm(A)andcalculsteitsvalues.
Commented by abdo mathsup 649 cc last updated on 07/May/18
we have A =∫_(−∞) ^(+∞)    (dx/(x^2  −(−(1/2) +i((√3)/2))))  = ∫_(−∞) ^(+∞)     (dx/(x^2  +(1/2) −i((√3)/2)))  = ∫_(−∞) ^(+∞)    ((x^2  +(1/2) +i((√3)/2))/((x^2  +(1/2))^2  +(3/4)))dx ⇒  Re(A) = ∫_(−∞) ^(+∞)   ((x^2  +(1/2))/((x^2  +(1/2))^2 +(3/4)))dx and  Im(A) = ((√3)/2) ∫_(−∞) ^(+∞)     (dx/((x^2  +(1/2))^2  +(3/4)))  let introduce  the complex function ϕ(z) =  (1/(z^2  −j))  ϕ(z) = (1/((z −(√j))(z +(√j)))) =  (1/((z − e^(i(π/3)) )(z  + e^(i(π/3)) )))  the poles of ϕ are e^(i(π/3))   , −e^(i(π/3))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^(i(π/3)) )  Res(ϕ,e^(i(π/3)) )=  (1/(2 e^(i(π/3)) )) =(1/2) e^(−i(π/3))   =(1/2)( cos(−(π/3)) +isin(−(π/3)))  =(1/2)( (1/2) −i((√3)/2))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/2)( (1/2) −i((√3)/2))  =i(π/2)  +π((√3)/2)  ⇒Re(A) = π((√3)/2)  and Im(A) = (π/2) .
wehaveA=+dxx2(12+i32)=+dxx2+12i32=+x2+12+i32(x2+12)2+34dxRe(A)=+x2+12(x2+12)2+34dxandIm(A)=32+dx(x2+12)2+34letintroducethecomplexfunctionφ(z)=1z2jφ(z)=1(zj)(z+j)=1(zeiπ3)(z+eiπ3)thepolesofφareeiπ3,eiπ3+φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=12eiπ3=12eiπ3=12(cos(π3)+isin(π3))=12(12i32)+φ(z)dz=2iπ12(12i32)=iπ2+π32Re(A)=π32andIm(A)=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *