Menu Close

let-a-from-R-find-F-a-t-cos-tx-a-2-x-2-dx-2-calculate-F-2-3-and-F-3-2-




Question Number 38466 by maxmathsup by imad last updated on 25/Jun/18
let a from R  find F_a (t)= ∫_(−∞) ^(+∞)   ((cos(tx))/(a^2  +x^2 ))dx  2) calculate F_2 (3)  and F_3 (2)
letafromRfindFa(t)=+cos(tx)a2+x2dx2)calculateF2(3)andF3(2)
Commented by math khazana by abdo last updated on 27/Jun/18
we have F_a (t)= Re( ∫_(−∞) ^(+∞)   (e^(itx) /(x^2  +a^2 ))dx)  let ϕ(z) = (e^(itz) /(z^(2 ) +a^2 ))  the poles of ϕ are ia and −ia  case1  a>0  ∫_(−∞) ^(+∞)   ϕ(z)dz=2iπ Res(ϕ,ia)=2iπ (e^(it(ia)) /(2ia))  =(π/a) e^(−at)  ⇒ F_a (t)=(π/a) e^(−at)   case2 a<0  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ Res(ϕ,−ia) =2iπ (e^(it(−ia)) /(−2ia))  =−(π/a) e^(at)  ⇒ F_a (t)=−(π/a) e^(at)   2) F_2 (3)=(π/2) e^(−6)    and F_3 (2)=(π/3) e^(−6)
wehaveFa(t)=Re(+eitxx2+a2dx)letφ(z)=eitzz2+a2thepolesofφareiaandiacase1a>0+φ(z)dz=2iπRes(φ,ia)=2iπeit(ia)2ia=πaeatFa(t)=πaeatcase2a<0+φ(z)dz=2iπRes(φ,ia)=2iπeit(ia)2ia=πaeatFa(t)=πaeat2)F2(3)=π2e6andF3(2)=π3e6

Leave a Reply

Your email address will not be published. Required fields are marked *