Menu Close

Let-a-function-F-R-R-be-defined-by-f-x-1-ax-0-for-all-X-R-Show-that-f-is-invertible-and-find-its-inverse-function-Also-find-the-value-s-of-if-inverse-of-f-is-itself-




Question Number 32161 by jarjum last updated on 20/Mar/18
Let a function F :R→R be defined by  f(x)=1+ax,α≠ 0 for all X ∈ R. Show  that f is invertible and find its inverse  function.Also find the value (s) of α  if inverse of f is itself
$${Let}\:{a}\:{function}\:{F}\::{R}\rightarrow{R}\:{be}\:{defined}\:{by} \\ $$$${f}\left({x}\right)=\mathrm{1}+{ax},\alpha\neq\:\mathrm{0}\:{for}\:{all}\:{X}\:\in\:{R}.\:{Show} \\ $$$${that}\:{f}\:{is}\:{invertible}\:{and}\:{find}\:{its}\:{inverse} \\ $$$${function}.{Also}\:{find}\:{the}\:{value}\:\left({s}\right)\:{of}\:\alpha \\ $$$${if}\:{inverse}\:{of}\:{f}\:{is}\:{itself} \\ $$
Answered by mrW2 last updated on 21/Mar/18
f(x)=1+ax  f^(−1) (x)=((x−1)/a)    with a=−1:  f^(−1) (x)=f(x)
$${f}\left({x}\right)=\mathrm{1}+{ax} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}−\mathrm{1}}{{a}} \\ $$$$ \\ $$$${with}\:{a}=−\mathrm{1}: \\ $$$${f}^{−\mathrm{1}} \left({x}\right)={f}\left({x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *