Menu Close

Let-a-gt-0-A-f-C-2-0-a-R-f-0-f-0-0-N-1-f-sup-f-x-f-y-x-y-0-a-N-2-f-sup-f-x-f-x-x-0-a-Prove-that-N-1-and-N-2-are-equivalents-norms-




Question Number 124415 by snipers237 last updated on 03/Dec/20
Let a>0,   A={f∈C^2 ([0,a],R) , f(0)=f′(0)=0}  N_1 (f)= sup{∣f(x)∣+∣f′′(y)∣   ,x,y∈[0,a]}  N_2 (f)=sup{∣f(x)+f′′(x)∣   ,x∈[0,a]}  Prove that N_1 and N_2  are equivalents norms
Leta>0,A={fC2([0,a],R),f(0)=f(0)=0}N1(f)=sup{f(x)+f(y),x,y[0,a]}N2(f)=sup{f(x)+f(x),x[0,a]}ProvethatN1andN2areequivalentsnorms
Commented by mnjuly1970 last updated on 03/Dec/20
  Real  analysis ...
Realanalysis

Leave a Reply

Your email address will not be published. Required fields are marked *