Menu Close

Let-a-gt-0-and-f-R-R-a-function-satisfying-f-x-a-1-2-3f-x-3f-x-2-f-x-3-1-3-for-all-x-R-Then-a-period-of-f-x-is-ka-where-k-is-a-positive-integer-whose-value-is-A-1-




Question Number 119483 by Ar Brandon last updated on 24/Oct/20
Let a>0 and f:R→R a function satisfying       f(x+a)=1+[2−3f(x)+3f(x)^2 −f(x)^3 ]^(1/3)   for all x∈R. Then a period of f(x) is ka where k is  a positive integer whose value is  (A)1                    (B)2                    (C)3                    (D)4
Leta>0andf:RRafunctionsatisfyingf(x+a)=1+[23f(x)+3f(x)2f(x)3]1/3forallxR.Thenaperiodoff(x)iskawherekisapositiveintegerwhosevalueis(A)1(B)2(C)3(D)4
Answered by Olaf last updated on 25/Oct/20
f(x+a) = 1+[2−3f(x)+3f(x)^2 −f(x)^3 ]^(1/3)   [f(x+a)−1]^3  = 2−3f(x)+3f(x)^2 −f(x)^3   [f(x+a)−1]^3  = 1+[1−3f(x)+3f(x)^2 −f(x)^3 ]  [f(x+a)−1]^3  = 1−[f(x)−1]^3     [f(x+2a)−1]^3  = 1−[f(x+a)−1]^3   [f(x+2a)−1]^3  = 1−(1−[f(x)−1]^3 )  [f(x+2a)−1]^3  = [f(x)−1]^3   f(x+2a)−1 = f(x)−1  f(x+2a) =  f(x)   ⇒ period is 2a (k = 2)
f(x+a)=1+[23f(x)+3f(x)2f(x)3]1/3[f(x+a)1]3=23f(x)+3f(x)2f(x)3[f(x+a)1]3=1+[13f(x)+3f(x)2f(x)3][f(x+a)1]3=1[f(x)1]3[f(x+2a)1]3=1[f(x+a)1]3[f(x+2a)1]3=1(1[f(x)1]3)[f(x+2a)1]3=[f(x)1]3f(x+2a)1=f(x)1f(x+2a)=f(x)periodis2a(k=2)
Commented by Ar Brandon last updated on 25/Oct/20
Merci monsieur

Leave a Reply

Your email address will not be published. Required fields are marked *