Menu Close

let-a-gt-0-and-gt-0-fixed-solve-for-0-the-equation-2a-2-cos-x-2-2-x-a-x-a-4-x-




Question Number 163457 by HongKing last updated on 07/Jan/22
let  a>0  and  𝛌>0  fixed  solve for  (0;∞)  the equation:  2a^2 cos((x/(2λ)) - ((2λ)/x)) = a^(x/𝛌)   +  a^((4𝛌)/x)
$$\mathrm{let}\:\:\boldsymbol{\mathrm{a}}>\mathrm{0}\:\:\mathrm{and}\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\mathrm{fixed} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\:\left(\mathrm{0};\infty\right)\:\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{2a}^{\mathrm{2}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}\lambda}\:-\:\frac{\mathrm{2}\lambda}{\mathrm{x}}\right)\:=\:\mathrm{a}^{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\lambda}}} \:\:+\:\:\mathrm{a}^{\frac{\mathrm{4}\boldsymbol{\lambda}}{\boldsymbol{\mathrm{x}}}} \\ $$
Commented by mr W last updated on 07/Jan/22
always x=2λ
$${always}\:{x}=\mathrm{2}\lambda \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *