Menu Close

let-a-gt-0-b-from-C-and-Re-b-gt-0-1-calculate-b-cos-ax-x-2-b-2-dx-2-find-the-value-of-x-sin-ax-x-2-b-2-dx-




Question Number 37357 by math khazana by abdo last updated on 12/Jun/18
let a>0 b from C and  Re(b)>0  1) calculate  ∫_(−∞) ^(+∞)    ((b cos(ax))/(x^2  +b^2 ))dx  2) find the value of  ∫_(−∞) ^(+∞)    ((x sin(ax))/(x^2  +b^2 )) dx.
leta>0bfromCandRe(b)>01)calculate+bcos(ax)x2+b2dx2)findthevalueof+xsin(ax)x2+b2dx.
Commented by abdo.msup.com last updated on 13/Jun/18
1) let I =∫_(−∞) ^(+∞)    ((b cos(ax))/(x^(2 )  +b^2 ))dx  I = Re( ∫_(−∞) ^(+∞)    ((b e^(iax) )/(x^2  +b^2 ))dx) let consider  ϕ(z) = ((b e^(iaz) )/(z^2  +b^2 ))   ϕ(z) =((be^(iax) )/((z−ib)(z+ib))) so the poles of ϕ  are ib and −ib  we have Re(b)>0 ⇒  Im(ib)>0 so  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,ib)  Res(ϕ,ib) =lim_(z→ib)  (z−ib)ϕ(z)  = ((b e^(ia(ib)) )/(2ib)) = (e^(−ab) /(2i)) ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ (e^(−ab) /(2i)) =π e^(−ab)  ⇒  I  = π e^(−ab)   .
1)letI=+bcos(ax)x2+b2dxI=Re(+beiaxx2+b2dx)letconsiderφ(z)=beiazz2+b2φ(z)=beiax(zib)(z+ib)sothepolesofφareibandibwehaveRe(b)>0Im(ib)>0so+φ(z)dz=2iπRes(φ,ib)Res(φ,ib)=limzib(zib)φ(z)=beia(ib)2ib=eab2i+φ(z)dz=2iπeab2i=πeabI=πeab.
Commented by abdo.msup.com last updated on 13/Jun/18
2) let J = ∫_(−∞) ^(+∞)    ((x sin(ax))/(x^2  +b^2 ))dx   J = Im( ∫_(−∞) ^(+∞)    ((x e^(iax) )/(x^2  +b^2 )) dx)  let  ψ(z) = ((z e^(iaz) )/(z^2  +b^2 )) the poles of ψ are  ib and −ib  ∫_(−∞) ^(+∞)   ψ(z)dz =2iπ Res(ψ,ib)  =2iπ  ((ib e^(ia(ib)) )/(2ib)) = iπ e^(−ab)   ⇒J =πe^(−ab)
2)letJ=+xsin(ax)x2+b2dxJ=Im(+xeiaxx2+b2dx)letψ(z)=zeiazz2+b2thepolesofψareibandib+ψ(z)dz=2iπRes(ψ,ib)=2iπibeia(ib)2ib=iπeabJ=πeab

Leave a Reply

Your email address will not be published. Required fields are marked *