Menu Close

let-a-gt-0-calculate-0-dx-x-2-a-2-2-2-calculate-x-2-x-2-a-2-2-dx-




Question Number 30773 by abdo imad last updated on 25/Feb/18
let a>0 calculate ∫_0 ^∞      (dx/((x^2  +a^2 )^2 ))  2) calculate  ∫_(−∞) ^(+∞)    (x^2 /((x^2  +a^2 )^2 ))dx.
leta>0calculate0dx(x2+a2)22)calculate+x2(x2+a2)2dx.
Commented by abdo imad last updated on 26/Feb/18
1)the ch. x=a tant give  I=∫_0 ^∞   (dx/((x^2  +a^2 )^2 )) = ∫_0 ^(π/2)    (1/(a^4 (1+tan^2 t)^2 )) a(1+tan^2 t)dt  =(1/a^3 ) ∫_0 ^(π/2)    (dt/(1+tan^2 t))⇒a^3  I= ∫_0 ^(π/2)  cos^2 tdt  = ∫_0 ^(π/2)  ((1+cos(2t))/2)dt=(π/4) +[(1/4) sin(2t)]_0 ^(π/2)   =(π/4) ⇒  I=(π/(4 a^3 ))  2) let put J= ∫_(−∞) ^(+∞)    (x^2 /((x^2  +a^2 )^2 ))dx  J= 2∫_0 ^∞   ((x^2  +a^(2 )  −a^2 )/((x^2  +a^2 )^2 ))dx =2∫_0 ^∞   (dx/((x^2  +a^2 )))dx −2a^2  ∫_0 ^∞   (dx/((x^2  +a^2 )^2 ))dx  ch x=at ⇒ ∫_0 ^∞    (dx/((x^2  +a^2 )))= ∫_0 ^∞   ((adt)/(a^2 (1+t^2 )))=(1/a)(π/2)= (π/(2a))  J=(π/a) −2a^2  I = (π/a) −2a^2  (π/(4a^3 ))= (π/a) −(π/(2a))⇒ J=(π/(2a)) .
1)thech.x=atantgiveI=0dx(x2+a2)2=0π21a4(1+tan2t)2a(1+tan2t)dt=1a30π2dt1+tan2ta3I=0π2cos2tdt=0π21+cos(2t)2dt=π4+[14sin(2t)]0π2=π4I=π4a32)letputJ=+x2(x2+a2)2dxJ=20x2+a2a2(x2+a2)2dx=20dx(x2+a2)dx2a20dx(x2+a2)2dxchx=at0dx(x2+a2)=0adta2(1+t2)=1aπ2=π2aJ=πa2a2I=πa2a2π4a3=πaπ2aJ=π2a.

Leave a Reply

Your email address will not be published. Required fields are marked *