Menu Close

let-a-gt-0-find-the-sum-of-the-infinite-series-1-loga-2-2-loga-4-4-loga-6-6-




Question Number 177957 by infinityaction last updated on 11/Oct/22
let  a > 0 find the sum of the infinite   series   1 + (((loga)^2  )/(2!)) + (((loga)^4  )/(4!)) + (((loga)^6  )/(6!))...
leta>0findthesumoftheinfiniteseries1+(loga)22!+(loga)44!+(loga)66!
Answered by mr W last updated on 11/Oct/22
e^x =1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...  e^(−x) =1−(x/(1!))+(x^2 /(2!))−(x^3 /(3!))+...  e^x +e^(−x) =2(1+(x^2 /(2!))+(x^4 /(4!))+...)  ((e^x +e^(−x) )/2)=1+(x^2 /(2!))+(x^4 /(4!))+...  with x=log a  ((a+(1/a))/2)=1+(((log a)^2 )/(2!))+(((log a)^4 )/(4!))+...  ⇒1+(((log a)^2 )/(2!))+(((log a)^4 )/(4!))+...=((a^2 +1)/(2a))
ex=1+x1!+x22!+x33!+ex=1x1!+x22!x33!+ex+ex=2(1+x22!+x44!+)ex+ex2=1+x22!+x44!+withx=logaa+1a2=1+(loga)22!+(loga)44!+1+(loga)22!+(loga)44!+=a2+12a
Commented by infinityaction last updated on 11/Oct/22
thank you sir
thankyousir
Commented by Tawa11 last updated on 11/Oct/22
Great sir
Greatsir
Answered by Ar Brandon last updated on 11/Oct/22
1+(x^2 /(2!))+(x^4 /(4!))+(x^6 /(6!))+∙∙∙=cosh(x)  ⇒1+(((loga)^2 )/(2!))+(((loga)^4 )/(4!))+(((loga)^6 )/(6!))+∙∙∙=cosh(loga)       =(1/2)(e^(loga) +e^(−loga) )=(1/2)(a+(1/a))=((a^2 +1)/(2a))
1+x22!+x44!+x66!+=cosh(x)1+(loga)22!+(loga)44!+(loga)66!+=cosh(loga)=12(eloga+eloga)=12(a+1a)=a2+12a
Commented by Tawa11 last updated on 11/Oct/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *